axiosengine/axios/Common/PolygonManipulation/YuPengClipper.cs
2012-03-19 18:57:59 -05:00

513 lines
21 KiB
C#

using System;
using System.Collections.Generic;
using System.Diagnostics;
using FarseerPhysics.Collision.Shapes;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Common.PolygonManipulation
{
internal enum PolyClipType
{
Intersect,
Union,
Difference
}
public enum PolyClipError
{
None,
DegeneratedOutput,
NonSimpleInput,
BrokenResult
}
//Clipper contributed by Helge Backhaus
public static class YuPengClipper
{
private const float ClipperEpsilonSquared = 1.192092896e-07f;
public static List<Vertices> Union(Vertices polygon1, Vertices polygon2, out PolyClipError error)
{
return Execute(polygon1, polygon2, PolyClipType.Union, out error);
}
public static List<Vertices> Difference(Vertices polygon1, Vertices polygon2, out PolyClipError error)
{
return Execute(polygon1, polygon2, PolyClipType.Difference, out error);
}
public static List<Vertices> Intersect(Vertices polygon1, Vertices polygon2, out PolyClipError error)
{
return Execute(polygon1, polygon2, PolyClipType.Intersect, out error);
}
/// <summary>
/// Implements "A new algorithm for Boolean operations on general polygons"
/// available here: http://liama.ia.ac.cn/wiki/_media/user:dong:dong_cg_05.pdf
/// Merges two polygons, a subject and a clip with the specified operation. Polygons may not be
/// self-intersecting.
///
/// Warning: May yield incorrect results or even crash if polygons contain collinear points.
/// </summary>
/// <param name="subject">The subject polygon.</param>
/// <param name="clip">The clip polygon, which is added,
/// substracted or intersected with the subject</param>
/// <param name="clipType">The operation to be performed. Either
/// Union, Difference or Intersection.</param>
/// <param name="error">The error generated (if any)</param>
/// <returns>A list of closed polygons, which make up the result of the clipping operation.
/// Outer contours are ordered counter clockwise, holes are ordered clockwise.</returns>
private static List<Vertices> Execute(Vertices subject, Vertices clip,
PolyClipType clipType, out PolyClipError error)
{
Debug.Assert(subject.IsSimple() && clip.IsSimple(), "Non simple input!", "Input polygons must be simple (cannot intersect themselves).");
// Copy polygons
Vertices slicedSubject;
Vertices slicedClip;
// Calculate the intersection and touch points between
// subject and clip and add them to both
CalculateIntersections(subject, clip, out slicedSubject, out slicedClip);
// Translate polygons into upper right quadrant
// as the algorithm depends on it
Vector2 lbSubject = subject.GetCollisionBox().LowerBound;
Vector2 lbClip = clip.GetCollisionBox().LowerBound;
Vector2 translate;
Vector2.Min(ref lbSubject, ref lbClip, out translate);
translate = Vector2.One - translate;
if (translate != Vector2.Zero)
{
slicedSubject.Translate(ref translate);
slicedClip.Translate(ref translate);
}
// Enforce counterclockwise contours
slicedSubject.ForceCounterClockWise();
slicedClip.ForceCounterClockWise();
List<Edge> subjectSimplices;
List<float> subjectCoeff;
List<Edge> clipSimplices;
List<float> clipCoeff;
// Build simplical chains from the polygons and calculate the
// the corresponding coefficients
CalculateSimplicalChain(slicedSubject, out subjectCoeff, out subjectSimplices);
CalculateSimplicalChain(slicedClip, out clipCoeff, out clipSimplices);
List<Edge> resultSimplices;
// Determine the characteristics function for all non-original edges
// in subject and clip simplical chain and combine the edges contributing
// to the result, depending on the clipType
CalculateResultChain(subjectCoeff, subjectSimplices, clipCoeff, clipSimplices, clipType,
out resultSimplices);
List<Vertices> result;
// Convert result chain back to polygon(s)
error = BuildPolygonsFromChain(resultSimplices, out result);
// Reverse the polygon translation from the beginning
// and remove collinear points from output
translate *= -1f;
for (int i = 0; i < result.Count; ++i)
{
result[i].Translate(ref translate);
SimplifyTools.CollinearSimplify(result[i]);
}
return result;
}
/// <summary>
/// Calculates all intersections between two polygons.
/// </summary>
/// <param name="polygon1">The first polygon.</param>
/// <param name="polygon2">The second polygon.</param>
/// <param name="slicedPoly1">Returns the first polygon with added intersection points.</param>
/// <param name="slicedPoly2">Returns the second polygon with added intersection points.</param>
private static void CalculateIntersections(Vertices polygon1, Vertices polygon2,
out Vertices slicedPoly1, out Vertices slicedPoly2)
{
slicedPoly1 = new Vertices(polygon1);
slicedPoly2 = new Vertices(polygon2);
// Iterate through polygon1's edges
for (int i = 0; i < polygon1.Count; i++)
{
// Get edge vertices
Vector2 a = polygon1[i];
Vector2 b = polygon1[polygon1.NextIndex(i)];
// Get intersections between this edge and polygon2
for (int j = 0; j < polygon2.Count; j++)
{
Vector2 c = polygon2[j];
Vector2 d = polygon2[polygon2.NextIndex(j)];
Vector2 intersectionPoint;
// Check if the edges intersect
if (LineTools.LineIntersect(a, b, c, d, out intersectionPoint))
{
// calculate alpha values for sorting multiple intersections points on a edge
float alpha;
// Insert intersection point into first polygon
alpha = GetAlpha(a, b, intersectionPoint);
if (alpha > 0f && alpha < 1f)
{
int index = slicedPoly1.IndexOf(a) + 1;
while (index < slicedPoly1.Count &&
GetAlpha(a, b, slicedPoly1[index]) <= alpha)
{
++index;
}
slicedPoly1.Insert(index, intersectionPoint);
}
// Insert intersection point into second polygon
alpha = GetAlpha(c, d, intersectionPoint);
if (alpha > 0f && alpha < 1f)
{
int index = slicedPoly2.IndexOf(c) + 1;
while (index < slicedPoly2.Count &&
GetAlpha(c, d, slicedPoly2[index]) <= alpha)
{
++index;
}
slicedPoly2.Insert(index, intersectionPoint);
}
}
}
}
// Check for very small edges
for (int i = 0; i < slicedPoly1.Count; ++i)
{
int iNext = slicedPoly1.NextIndex(i);
//If they are closer than the distance remove vertex
if ((slicedPoly1[iNext] - slicedPoly1[i]).LengthSquared() <= ClipperEpsilonSquared)
{
slicedPoly1.RemoveAt(i);
--i;
}
}
for (int i = 0; i < slicedPoly2.Count; ++i)
{
int iNext = slicedPoly2.NextIndex(i);
//If they are closer than the distance remove vertex
if ((slicedPoly2[iNext] - slicedPoly2[i]).LengthSquared() <= ClipperEpsilonSquared)
{
slicedPoly2.RemoveAt(i);
--i;
}
}
}
/// <summary>
/// Calculates the simplical chain corresponding to the input polygon.
/// </summary>
/// <remarks>Used by method <c>Execute()</c>.</remarks>
private static void CalculateSimplicalChain(Vertices poly, out List<float> coeff,
out List<Edge> simplicies)
{
simplicies = new List<Edge>();
coeff = new List<float>();
for (int i = 0; i < poly.Count; ++i)
{
simplicies.Add(new Edge(poly[i], poly[poly.NextIndex(i)]));
coeff.Add(CalculateSimplexCoefficient(Vector2.Zero, poly[i], poly[poly.NextIndex(i)]));
}
}
/// <summary>
/// Calculates the characteristics function for all edges of
/// the given simplical chains and builds the result chain.
/// </summary>
/// <remarks>Used by method <c>Execute()</c>.</remarks>
private static void CalculateResultChain(List<float> poly1Coeff, List<Edge> poly1Simplicies,
List<float> poly2Coeff, List<Edge> poly2Simplicies,
PolyClipType clipType, out List<Edge> resultSimplices)
{
resultSimplices = new List<Edge>();
for (int i = 0; i < poly1Simplicies.Count; ++i)
{
float edgeCharacter = 0f;
if (poly2Simplicies.Contains(poly1Simplicies[i]) ||
(poly2Simplicies.Contains(-poly1Simplicies[i]) && clipType == PolyClipType.Union))
{
edgeCharacter = 1f;
}
else
{
for (int j = 0; j < poly2Simplicies.Count; ++j)
{
if (!poly2Simplicies.Contains(-poly1Simplicies[i]))
{
edgeCharacter += CalculateBeta(poly1Simplicies[i].GetCenter(),
poly2Simplicies[j], poly2Coeff[j]);
}
}
}
if (clipType == PolyClipType.Intersect)
{
if (edgeCharacter == 1f)
{
resultSimplices.Add(poly1Simplicies[i]);
}
}
else
{
if (edgeCharacter == 0f)
{
resultSimplices.Add(poly1Simplicies[i]);
}
}
}
for (int i = 0; i < poly2Simplicies.Count; ++i)
{
if (!resultSimplices.Contains(poly2Simplicies[i]) &&
!resultSimplices.Contains(-poly2Simplicies[i]))
{
float edgeCharacter = 0f;
if (poly1Simplicies.Contains(poly2Simplicies[i]) ||
(poly1Simplicies.Contains(-poly2Simplicies[i]) && clipType == PolyClipType.Union))
{
edgeCharacter = 1f;
}
else
{
for (int j = 0; j < poly1Simplicies.Count; ++j)
{
if (!poly1Simplicies.Contains(-poly2Simplicies[i]))
{
edgeCharacter += CalculateBeta(poly2Simplicies[i].GetCenter(),
poly1Simplicies[j], poly1Coeff[j]);
}
}
}
if (clipType == PolyClipType.Intersect || clipType == PolyClipType.Difference)
{
if (edgeCharacter == 1f)
{
resultSimplices.Add(-poly2Simplicies[i]);
}
}
else
{
if (edgeCharacter == 0f)
{
resultSimplices.Add(poly2Simplicies[i]);
}
}
}
}
}
/// <summary>
/// Calculates the polygon(s) from the result simplical chain.
/// </summary>
/// <remarks>Used by method <c>Execute()</c>.</remarks>
private static PolyClipError BuildPolygonsFromChain(List<Edge> simplicies, out List<Vertices> result)
{
result = new List<Vertices>();
PolyClipError errVal = PolyClipError.None;
while (simplicies.Count > 0)
{
Vertices output = new Vertices();
output.Add(simplicies[0].EdgeStart);
output.Add(simplicies[0].EdgeEnd);
simplicies.RemoveAt(0);
bool closed = false;
int index = 0;
int count = simplicies.Count; // Needed to catch infinite loops
while (!closed && simplicies.Count > 0)
{
if (VectorEqual(output[output.Count - 1], simplicies[index].EdgeStart))
{
if (VectorEqual(simplicies[index].EdgeEnd, output[0]))
{
closed = true;
}
else
{
output.Add(simplicies[index].EdgeEnd);
}
simplicies.RemoveAt(index);
--index;
}
else if (VectorEqual(output[output.Count - 1], simplicies[index].EdgeEnd))
{
if (VectorEqual(simplicies[index].EdgeStart, output[0]))
{
closed = true;
}
else
{
output.Add(simplicies[index].EdgeStart);
}
simplicies.RemoveAt(index);
--index;
}
if (!closed)
{
if (++index == simplicies.Count)
{
if (count == simplicies.Count)
{
result = new List<Vertices>();
Debug.WriteLine("Undefined error while building result polygon(s).");
return PolyClipError.BrokenResult;
}
index = 0;
count = simplicies.Count;
}
}
}
if (output.Count < 3)
{
errVal = PolyClipError.DegeneratedOutput;
Debug.WriteLine("Degenerated output polygon produced (vertices < 3).");
}
result.Add(output);
}
return errVal;
}
/// <summary>
/// Needed to calculate the characteristics function of a simplex.
/// </summary>
/// <remarks>Used by method <c>CalculateEdgeCharacter()</c>.</remarks>
private static float CalculateBeta(Vector2 point, Edge e, float coefficient)
{
float result = 0f;
if (PointInSimplex(point, e))
{
result = coefficient;
}
if (PointOnLineSegment(Vector2.Zero, e.EdgeStart, point) ||
PointOnLineSegment(Vector2.Zero, e.EdgeEnd, point))
{
result = .5f * coefficient;
}
return result;
}
/// <summary>
/// Needed for sorting multiple intersections points on the same edge.
/// </summary>
/// <remarks>Used by method <c>CalculateIntersections()</c>.</remarks>
private static float GetAlpha(Vector2 start, Vector2 end, Vector2 point)
{
return (point - start).LengthSquared() / (end - start).LengthSquared();
}
/// <summary>
/// Returns the coefficient of a simplex.
/// </summary>
/// <remarks>Used by method <c>CalculateSimplicalChain()</c>.</remarks>
private static float CalculateSimplexCoefficient(Vector2 a, Vector2 b, Vector2 c)
{
float isLeft = MathUtils.Area(ref a, ref b, ref c);
if (isLeft < 0f)
{
return -1f;
}
if (isLeft > 0f)
{
return 1f;
}
return 0f;
}
/// <summary>
/// Winding number test for a point in a simplex.
/// </summary>
/// <param name="point">The point to be tested.</param>
/// <param name="edge">The edge that the point is tested against.</param>
/// <returns>False if the winding number is even and the point is outside
/// the simplex and True otherwise.</returns>
private static bool PointInSimplex(Vector2 point, Edge edge)
{
Vertices polygon = new Vertices();
polygon.Add(Vector2.Zero);
polygon.Add(edge.EdgeStart);
polygon.Add(edge.EdgeEnd);
return (polygon.PointInPolygon(ref point) == 1);
}
/// <summary>
/// Tests if a point lies on a line segment.
/// </summary>
/// <remarks>Used by method <c>CalculateBeta()</c>.</remarks>
private static bool PointOnLineSegment(Vector2 start, Vector2 end, Vector2 point)
{
Vector2 segment = end - start;
return MathUtils.Area(ref start, ref end, ref point) == 0f &&
Vector2.Dot(point - start, segment) >= 0f &&
Vector2.Dot(point - end, segment) <= 0f;
}
private static bool VectorEqual(Vector2 vec1, Vector2 vec2)
{
return (vec2 - vec1).LengthSquared() <= ClipperEpsilonSquared;
}
#region Nested type: Edge
/// <summary>Specifies an Edge. Edges are used to represent simplicies in simplical chains</summary>
private sealed class Edge
{
public Edge(Vector2 edgeStart, Vector2 edgeEnd)
{
EdgeStart = edgeStart;
EdgeEnd = edgeEnd;
}
public Vector2 EdgeStart { get; private set; }
public Vector2 EdgeEnd { get; private set; }
public Vector2 GetCenter()
{
return (EdgeStart + EdgeEnd) / 2f;
}
public static Edge operator -(Edge e)
{
return new Edge(e.EdgeEnd, e.EdgeStart);
}
public override bool Equals(Object obj)
{
// If parameter is null return false.
if (obj == null)
{
return false;
}
// If parameter cannot be cast to Point return false.
return Equals(obj as Edge);
}
public bool Equals(Edge e)
{
// If parameter is null return false:
if (e == null)
{
return false;
}
// Return true if the fields match
return VectorEqual(EdgeStart, e.EdgeStart) && VectorEqual(EdgeEnd, e.EdgeEnd);
}
public override int GetHashCode()
{
return EdgeStart.GetHashCode() ^ EdgeEnd.GetHashCode();
}
}
#endregion
}
}