axiosengine/axios/Dynamics/Joints/DistanceJoint.cs
2012-03-19 18:57:59 -05:00

286 lines
10 KiB
C#

/*
* Farseer Physics Engine based on Box2D.XNA port:
* Copyright (c) 2010 Ian Qvist
*
* Box2D.XNA port of Box2D:
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
*
* Original source Box2D:
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
using System;
using System.Diagnostics;
using FarseerPhysics.Common;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Dynamics.Joints
{
// 1-D rained system
// m (v2 - v1) = lambda
// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
// x2 = x1 + h * v2
// 1-D mass-damper-spring system
// m (v2 - v1) + h * d * v2 + h * k *
// C = norm(p2 - p1) - L
// u = (p2 - p1) / norm(p2 - p1)
// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
// J = [-u -cross(r1, u) u cross(r2, u)]
// K = J * invM * JT
// = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
/// <summary>
/// A distance joint rains two points on two bodies
/// to remain at a fixed distance from each other. You can view
/// this as a massless, rigid rod.
/// </summary>
public class DistanceJoint : Joint
{
/// <summary>
/// The local anchor point relative to bodyA's origin.
/// </summary>
public Vector2 LocalAnchorA;
/// <summary>
/// The local anchor point relative to bodyB's origin.
/// </summary>
public Vector2 LocalAnchorB;
private float _bias;
private float _gamma;
private float _impulse;
private float _mass;
private float _tmpFloat1;
private Vector2 _tmpVector1;
private Vector2 _u;
internal DistanceJoint()
{
JointType = JointType.Distance;
}
/// <summary>
/// This requires defining an
/// anchor point on both bodies and the non-zero length of the
/// distance joint. If you don't supply a length, the local anchor points
/// is used so that the initial configuration can violate the constraint
/// slightly. This helps when saving and loading a game.
/// @warning Do not use a zero or short length.
/// </summary>
/// <param name="bodyA">The first body</param>
/// <param name="bodyB">The second body</param>
/// <param name="localAnchorA">The first body anchor</param>
/// <param name="localAnchorB">The second body anchor</param>
public DistanceJoint(Body bodyA, Body bodyB, Vector2 localAnchorA, Vector2 localAnchorB)
: base(bodyA, bodyB)
{
JointType = JointType.Distance;
LocalAnchorA = localAnchorA;
LocalAnchorB = localAnchorB;
Vector2 d = WorldAnchorB - WorldAnchorA;
Length = d.Length();
}
/// <summary>
/// The natural length between the anchor points.
/// Manipulating the length can lead to non-physical behavior when the frequency is zero.
/// </summary>
public float Length { get; set; }
/// <summary>
/// The mass-spring-damper frequency in Hertz.
/// </summary>
public float Frequency { get; set; }
/// <summary>
/// The damping ratio. 0 = no damping, 1 = critical damping.
/// </summary>
public float DampingRatio { get; set; }
public override sealed Vector2 WorldAnchorA
{
get { return BodyA.GetWorldPoint(LocalAnchorA); }
}
public override sealed Vector2 WorldAnchorB
{
get { return BodyB.GetWorldPoint(LocalAnchorB); }
set { Debug.Assert(false, "You can't set the world anchor on this joint type."); }
}
public override Vector2 GetReactionForce(float inv_dt)
{
Vector2 F = (inv_dt * _impulse) * _u;
return F;
}
public override float GetReactionTorque(float inv_dt)
{
return 0.0f;
}
internal override void InitVelocityConstraints(ref TimeStep step)
{
Body b1 = BodyA;
Body b2 = BodyB;
// Compute the effective mass matrix.
Vector2 r1 = MathUtils.Multiply(ref b1.Xf.R, LocalAnchorA - b1.LocalCenter);
Vector2 r2 = MathUtils.Multiply(ref b2.Xf.R, LocalAnchorB - b2.LocalCenter);
_u = b2.Sweep.C + r2 - b1.Sweep.C - r1;
// Handle singularity.
float length = _u.Length();
if (length > Settings.LinearSlop)
{
_u *= 1.0f / length;
}
else
{
_u = Vector2.Zero;
}
float cr1u, cr2u;
MathUtils.Cross(ref r1, ref _u, out cr1u);
MathUtils.Cross(ref r2, ref _u, out cr2u);
float invMass = b1.InvMass + b1.InvI * cr1u * cr1u + b2.InvMass + b2.InvI * cr2u * cr2u;
Debug.Assert(invMass > Settings.Epsilon);
_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
if (Frequency > 0.0f)
{
float C = length - Length;
// Frequency
float omega = 2.0f * Settings.Pi * Frequency;
// Damping coefficient
float d = 2.0f * _mass * DampingRatio * omega;
// Spring stiffness
float k = _mass * omega * omega;
// magic formulas
_gamma = step.dt * (d + step.dt * k);
_gamma = _gamma != 0.0f ? 1.0f / _gamma : 0.0f;
_bias = C * step.dt * k * _gamma;
_mass = invMass + _gamma;
_mass = _mass != 0.0f ? 1.0f / _mass : 0.0f;
}
if (Settings.EnableWarmstarting)
{
// Scale the impulse to support a variable time step.
_impulse *= step.dtRatio;
Vector2 P = _impulse * _u;
b1.LinearVelocityInternal -= b1.InvMass * P;
MathUtils.Cross(ref r1, ref P, out _tmpFloat1);
b1.AngularVelocityInternal -= b1.InvI * /* r1 x P */ _tmpFloat1;
b2.LinearVelocityInternal += b2.InvMass * P;
MathUtils.Cross(ref r2, ref P, out _tmpFloat1);
b2.AngularVelocityInternal += b2.InvI * /* r2 x P */ _tmpFloat1;
}
else
{
_impulse = 0.0f;
}
}
internal override void SolveVelocityConstraints(ref TimeStep step)
{
Body b1 = BodyA;
Body b2 = BodyB;
Transform xf1, xf2;
b1.GetTransform(out xf1);
b2.GetTransform(out xf2);
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b1.LocalCenter);
Vector2 r2 = MathUtils.Multiply(ref xf2.R, LocalAnchorB - b2.LocalCenter);
// Cdot = dot(u, v + cross(w, r))
MathUtils.Cross(b1.AngularVelocityInternal, ref r1, out _tmpVector1);
Vector2 v1 = b1.LinearVelocityInternal + _tmpVector1;
MathUtils.Cross(b2.AngularVelocityInternal, ref r2, out _tmpVector1);
Vector2 v2 = b2.LinearVelocityInternal + _tmpVector1;
float Cdot = Vector2.Dot(_u, v2 - v1);
float impulse = -_mass * (Cdot + _bias + _gamma * _impulse);
_impulse += impulse;
Vector2 P = impulse * _u;
b1.LinearVelocityInternal -= b1.InvMass * P;
MathUtils.Cross(ref r1, ref P, out _tmpFloat1);
b1.AngularVelocityInternal -= b1.InvI * _tmpFloat1;
b2.LinearVelocityInternal += b2.InvMass * P;
MathUtils.Cross(ref r2, ref P, out _tmpFloat1);
b2.AngularVelocityInternal += b2.InvI * _tmpFloat1;
}
internal override bool SolvePositionConstraints()
{
if (Frequency > 0.0f)
{
// There is no position correction for soft distance constraints.
return true;
}
Body b1 = BodyA;
Body b2 = BodyB;
Transform xf1, xf2;
b1.GetTransform(out xf1);
b2.GetTransform(out xf2);
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b1.LocalCenter);
Vector2 r2 = MathUtils.Multiply(ref xf2.R, LocalAnchorB - b2.LocalCenter);
Vector2 d = b2.Sweep.C + r2 - b1.Sweep.C - r1;
float length = d.Length();
if (length == 0.0f)
return true;
d /= length;
float C = length - Length;
C = MathUtils.Clamp(C, -Settings.MaxLinearCorrection, Settings.MaxLinearCorrection);
float impulse = -_mass * C;
_u = d;
Vector2 P = impulse * _u;
b1.Sweep.C -= b1.InvMass * P;
MathUtils.Cross(ref r1, ref P, out _tmpFloat1);
b1.Sweep.A -= b1.InvI * _tmpFloat1;
b2.Sweep.C += b2.InvMass * P;
MathUtils.Cross(ref r2, ref P, out _tmpFloat1);
b2.Sweep.A += b2.InvI * _tmpFloat1;
b1.SynchronizeTransform();
b2.SynchronizeTransform();
return Math.Abs(C) < Settings.LinearSlop;
}
}
}