677 lines
24 KiB
C#
677 lines
24 KiB
C#
/*
|
|
* Farseer Physics Engine based on Box2D.XNA port:
|
|
* Copyright (c) 2010 Ian Qvist
|
|
*
|
|
* Box2D.XNA port of Box2D:
|
|
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
|
*
|
|
* Original source Box2D:
|
|
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
using System;
|
|
using System.Diagnostics;
|
|
using FarseerPhysics.Common;
|
|
using Microsoft.Xna.Framework;
|
|
|
|
namespace FarseerPhysics.Dynamics.Joints
|
|
{
|
|
// Linear constraint (point-to-line)
|
|
// d = p2 - p1 = x2 + r2 - x1 - r1
|
|
// C = dot(perp, d)
|
|
// Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
|
// = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
|
|
// J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
|
|
//
|
|
// Angular constraint
|
|
// C = a2 - a1 + a_initial
|
|
// Cdot = w2 - w1
|
|
// J = [0 0 -1 0 0 1]
|
|
//
|
|
// K = J * invM * JT
|
|
//
|
|
// J = [-a -s1 a s2]
|
|
// [0 -1 0 1]
|
|
// a = perp
|
|
// s1 = cross(d + r1, a) = cross(p2 - x1, a)
|
|
// s2 = cross(r2, a) = cross(p2 - x2, a)
|
|
// Motor/Limit linear constraint
|
|
// C = dot(ax1, d)
|
|
// Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
|
|
// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]
|
|
// Block Solver
|
|
// We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even
|
|
// when the mass has poor distribution (leading to large torques about the joint anchor points).
|
|
//
|
|
// The Jacobian has 3 rows:
|
|
// J = [-uT -s1 uT s2] // linear
|
|
// [0 -1 0 1] // angular
|
|
// [-vT -a1 vT a2] // limit
|
|
//
|
|
// u = perp
|
|
// v = axis
|
|
// s1 = cross(d + r1, u), s2 = cross(r2, u)
|
|
// a1 = cross(d + r1, v), a2 = cross(r2, v)
|
|
// M * (v2 - v1) = JT * df
|
|
// J * v2 = bias
|
|
//
|
|
// v2 = v1 + invM * JT * df
|
|
// J * (v1 + invM * JT * df) = bias
|
|
// K * df = bias - J * v1 = -Cdot
|
|
// K = J * invM * JT
|
|
// Cdot = J * v1 - bias
|
|
//
|
|
// Now solve for f2.
|
|
// df = f2 - f1
|
|
// K * (f2 - f1) = -Cdot
|
|
// f2 = invK * (-Cdot) + f1
|
|
//
|
|
// Clamp accumulated limit impulse.
|
|
// lower: f2(3) = max(f2(3), 0)
|
|
// upper: f2(3) = min(f2(3), 0)
|
|
//
|
|
// Solve for correct f2(1:2)
|
|
// K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:3) * f1
|
|
// = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:2) * f1(1:2) + K(1:2,3) * f1(3)
|
|
// K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3)) + K(1:2,1:2) * f1(1:2)
|
|
// f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2)
|
|
//
|
|
// Now compute impulse to be applied:
|
|
// df = f2 - f1
|
|
|
|
/// <summary>
|
|
/// A prismatic joint. This joint provides one degree of freedom: translation
|
|
/// along an axis fixed in body1. Relative rotation is prevented. You can
|
|
/// use a joint limit to restrict the range of motion and a joint motor to
|
|
/// drive the motion or to model joint friction.
|
|
/// </summary>
|
|
public class PrismaticJoint : Joint
|
|
{
|
|
public Vector2 LocalAnchorA;
|
|
|
|
public Vector2 LocalAnchorB;
|
|
private Mat33 _K;
|
|
private float _a1, _a2;
|
|
private Vector2 _axis;
|
|
private bool _enableLimit;
|
|
private bool _enableMotor;
|
|
private Vector3 _impulse;
|
|
private LimitState _limitState;
|
|
private Vector2 _localXAxis1;
|
|
private Vector2 _localYAxis1;
|
|
private float _lowerTranslation;
|
|
private float _maxMotorForce;
|
|
private float _motorImpulse;
|
|
private float _motorMass; // effective mass for motor/limit translational constraint.
|
|
private float _motorSpeed;
|
|
private Vector2 _perp;
|
|
private float _refAngle;
|
|
private float _s1, _s2;
|
|
private float _upperTranslation;
|
|
|
|
internal PrismaticJoint()
|
|
{
|
|
JointType = JointType.Prismatic;
|
|
}
|
|
|
|
/// <summary>
|
|
/// This requires defining a line of
|
|
/// motion using an axis and an anchor point. The definition uses local
|
|
/// anchor points and a local axis so that the initial configuration
|
|
/// can violate the constraint slightly. The joint translation is zero
|
|
/// when the local anchor points coincide in world space. Using local
|
|
/// anchors and a local axis helps when saving and loading a game.
|
|
/// </summary>
|
|
/// <param name="bodyA">The first body.</param>
|
|
/// <param name="bodyB">The second body.</param>
|
|
/// <param name="localAnchorA">The first body anchor.</param>
|
|
/// <param name="localAnchorB">The second body anchor.</param>
|
|
/// <param name="axis">The axis.</param>
|
|
public PrismaticJoint(Body bodyA, Body bodyB, Vector2 localAnchorA, Vector2 localAnchorB, Vector2 axis)
|
|
: base(bodyA, bodyB)
|
|
{
|
|
JointType = JointType.Prismatic;
|
|
|
|
LocalAnchorA = localAnchorA;
|
|
LocalAnchorB = localAnchorB;
|
|
|
|
_localXAxis1 = BodyA.GetLocalVector(axis);
|
|
_localYAxis1 = MathUtils.Cross(1.0f, _localXAxis1);
|
|
_refAngle = BodyB.Rotation - BodyA.Rotation;
|
|
|
|
_limitState = LimitState.Inactive;
|
|
}
|
|
|
|
public override Vector2 WorldAnchorA
|
|
{
|
|
get { return BodyA.GetWorldPoint(LocalAnchorA); }
|
|
}
|
|
|
|
public override Vector2 WorldAnchorB
|
|
{
|
|
get { return BodyB.GetWorldPoint(LocalAnchorB); }
|
|
set { Debug.Assert(false, "You can't set the world anchor on this joint type."); }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the current joint translation, usually in meters.
|
|
/// </summary>
|
|
/// <value></value>
|
|
public float JointTranslation
|
|
{
|
|
get
|
|
{
|
|
Vector2 d = BodyB.GetWorldPoint(LocalAnchorB) - BodyA.GetWorldPoint(LocalAnchorA);
|
|
Vector2 axis = BodyA.GetWorldVector(ref _localXAxis1);
|
|
|
|
return Vector2.Dot(d, axis);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the current joint translation speed, usually in meters per second.
|
|
/// </summary>
|
|
/// <value></value>
|
|
public float JointSpeed
|
|
{
|
|
get
|
|
{
|
|
Transform xf1, xf2;
|
|
BodyA.GetTransform(out xf1);
|
|
BodyB.GetTransform(out xf2);
|
|
|
|
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - BodyA.LocalCenter);
|
|
Vector2 r2 = MathUtils.Multiply(ref xf2.R, LocalAnchorB - BodyB.LocalCenter);
|
|
Vector2 p1 = BodyA.Sweep.C + r1;
|
|
Vector2 p2 = BodyB.Sweep.C + r2;
|
|
Vector2 d = p2 - p1;
|
|
Vector2 axis = BodyA.GetWorldVector(ref _localXAxis1);
|
|
|
|
Vector2 v1 = BodyA.LinearVelocityInternal;
|
|
Vector2 v2 = BodyB.LinearVelocityInternal;
|
|
float w1 = BodyA.AngularVelocityInternal;
|
|
float w2 = BodyB.AngularVelocityInternal;
|
|
|
|
float speed = Vector2.Dot(d, MathUtils.Cross(w1, axis)) +
|
|
Vector2.Dot(axis, v2 + MathUtils.Cross(w2, r2) - v1 - MathUtils.Cross(w1, r1));
|
|
return speed;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Is the joint limit enabled?
|
|
/// </summary>
|
|
/// <value><c>true</c> if [limit enabled]; otherwise, <c>false</c>.</value>
|
|
public bool LimitEnabled
|
|
{
|
|
get { return _enableLimit; }
|
|
set
|
|
{
|
|
Debug.Assert(BodyA.FixedRotation == false || BodyB.FixedRotation == false,
|
|
"Warning: limits does currently not work with fixed rotation");
|
|
|
|
WakeBodies();
|
|
_enableLimit = value;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the lower joint limit, usually in meters.
|
|
/// </summary>
|
|
/// <value></value>
|
|
public float LowerLimit
|
|
{
|
|
get { return _lowerTranslation; }
|
|
set
|
|
{
|
|
WakeBodies();
|
|
_lowerTranslation = value;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the upper joint limit, usually in meters.
|
|
/// </summary>
|
|
/// <value></value>
|
|
public float UpperLimit
|
|
{
|
|
get { return _upperTranslation; }
|
|
set
|
|
{
|
|
WakeBodies();
|
|
_upperTranslation = value;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Is the joint motor enabled?
|
|
/// </summary>
|
|
/// <value><c>true</c> if [motor enabled]; otherwise, <c>false</c>.</value>
|
|
public bool MotorEnabled
|
|
{
|
|
get { return _enableMotor; }
|
|
set
|
|
{
|
|
WakeBodies();
|
|
_enableMotor = value;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Set the motor speed, usually in meters per second.
|
|
/// </summary>
|
|
/// <value>The speed.</value>
|
|
public float MotorSpeed
|
|
{
|
|
set
|
|
{
|
|
WakeBodies();
|
|
_motorSpeed = value;
|
|
}
|
|
get { return _motorSpeed; }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Set the maximum motor force, usually in N.
|
|
/// </summary>
|
|
/// <value>The force.</value>
|
|
public float MaxMotorForce
|
|
{
|
|
get { return _maxMotorForce; }
|
|
set
|
|
{
|
|
WakeBodies();
|
|
_maxMotorForce = value;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the current motor force, usually in N.
|
|
/// </summary>
|
|
/// <value></value>
|
|
public float MotorForce
|
|
{
|
|
get { return _motorImpulse; }
|
|
set { _motorImpulse = value; }
|
|
}
|
|
|
|
public Vector2 LocalXAxis1
|
|
{
|
|
get { return _localXAxis1; }
|
|
set
|
|
{
|
|
_localXAxis1 = BodyA.GetLocalVector(value);
|
|
_localYAxis1 = MathUtils.Cross(1.0f, _localXAxis1);
|
|
}
|
|
}
|
|
|
|
public float ReferenceAngle
|
|
{
|
|
get { return _refAngle; }
|
|
set { _refAngle = value; }
|
|
}
|
|
|
|
public override Vector2 GetReactionForce(float inv_dt)
|
|
{
|
|
return inv_dt * (_impulse.X * _perp + (_motorImpulse + _impulse.Z) * _axis);
|
|
}
|
|
|
|
public override float GetReactionTorque(float inv_dt)
|
|
{
|
|
return inv_dt * _impulse.Y;
|
|
}
|
|
|
|
internal override void InitVelocityConstraints(ref TimeStep step)
|
|
{
|
|
Body b1 = BodyA;
|
|
Body b2 = BodyB;
|
|
|
|
LocalCenterA = b1.LocalCenter;
|
|
LocalCenterB = b2.LocalCenter;
|
|
|
|
Transform xf1, xf2;
|
|
b1.GetTransform(out xf1);
|
|
b2.GetTransform(out xf2);
|
|
|
|
// Compute the effective masses.
|
|
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - LocalCenterA);
|
|
Vector2 r2 = MathUtils.Multiply(ref xf2.R, LocalAnchorB - LocalCenterB);
|
|
Vector2 d = b2.Sweep.C + r2 - b1.Sweep.C - r1;
|
|
|
|
InvMassA = b1.InvMass;
|
|
InvIA = b1.InvI;
|
|
InvMassB = b2.InvMass;
|
|
InvIB = b2.InvI;
|
|
|
|
// Compute motor Jacobian and effective mass.
|
|
{
|
|
_axis = MathUtils.Multiply(ref xf1.R, _localXAxis1);
|
|
_a1 = MathUtils.Cross(d + r1, _axis);
|
|
_a2 = MathUtils.Cross(r2, _axis);
|
|
|
|
_motorMass = InvMassA + InvMassB + InvIA * _a1 * _a1 + InvIB * _a2 * _a2;
|
|
|
|
if (_motorMass > Settings.Epsilon)
|
|
{
|
|
_motorMass = 1.0f / _motorMass;
|
|
}
|
|
}
|
|
|
|
// Prismatic constraint.
|
|
{
|
|
_perp = MathUtils.Multiply(ref xf1.R, _localYAxis1);
|
|
|
|
_s1 = MathUtils.Cross(d + r1, _perp);
|
|
_s2 = MathUtils.Cross(r2, _perp);
|
|
|
|
float m1 = InvMassA, m2 = InvMassB;
|
|
float i1 = InvIA, i2 = InvIB;
|
|
|
|
float k11 = m1 + m2 + i1 * _s1 * _s1 + i2 * _s2 * _s2;
|
|
float k12 = i1 * _s1 + i2 * _s2;
|
|
float k13 = i1 * _s1 * _a1 + i2 * _s2 * _a2;
|
|
float k22 = i1 + i2;
|
|
float k23 = i1 * _a1 + i2 * _a2;
|
|
float k33 = m1 + m2 + i1 * _a1 * _a1 + i2 * _a2 * _a2;
|
|
|
|
_K.Col1 = new Vector3(k11, k12, k13);
|
|
_K.Col2 = new Vector3(k12, k22, k23);
|
|
_K.Col3 = new Vector3(k13, k23, k33);
|
|
}
|
|
|
|
// Compute motor and limit terms.
|
|
if (_enableLimit)
|
|
{
|
|
float jointTranslation = Vector2.Dot(_axis, d);
|
|
if (Math.Abs(_upperTranslation - _lowerTranslation) < 2.0f * Settings.LinearSlop)
|
|
{
|
|
_limitState = LimitState.Equal;
|
|
}
|
|
else if (jointTranslation <= _lowerTranslation)
|
|
{
|
|
if (_limitState != LimitState.AtLower)
|
|
{
|
|
_limitState = LimitState.AtLower;
|
|
_impulse.Z = 0.0f;
|
|
}
|
|
}
|
|
else if (jointTranslation >= _upperTranslation)
|
|
{
|
|
if (_limitState != LimitState.AtUpper)
|
|
{
|
|
_limitState = LimitState.AtUpper;
|
|
_impulse.Z = 0.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_limitState = LimitState.Inactive;
|
|
_impulse.Z = 0.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_limitState = LimitState.Inactive;
|
|
}
|
|
|
|
if (_enableMotor == false)
|
|
{
|
|
_motorImpulse = 0.0f;
|
|
}
|
|
|
|
if (Settings.EnableWarmstarting)
|
|
{
|
|
// Account for variable time step.
|
|
_impulse *= step.dtRatio;
|
|
_motorImpulse *= step.dtRatio;
|
|
|
|
Vector2 P = _impulse.X * _perp + (_motorImpulse + _impulse.Z) * _axis;
|
|
float L1 = _impulse.X * _s1 + _impulse.Y + (_motorImpulse + _impulse.Z) * _a1;
|
|
float L2 = _impulse.X * _s2 + _impulse.Y + (_motorImpulse + _impulse.Z) * _a2;
|
|
|
|
b1.LinearVelocityInternal -= InvMassA * P;
|
|
b1.AngularVelocityInternal -= InvIA * L1;
|
|
|
|
b2.LinearVelocityInternal += InvMassB * P;
|
|
b2.AngularVelocityInternal += InvIB * L2;
|
|
}
|
|
else
|
|
{
|
|
_impulse = Vector3.Zero;
|
|
_motorImpulse = 0.0f;
|
|
}
|
|
}
|
|
|
|
internal override void SolveVelocityConstraints(ref TimeStep step)
|
|
{
|
|
Body b1 = BodyA;
|
|
Body b2 = BodyB;
|
|
|
|
Vector2 v1 = b1.LinearVelocityInternal;
|
|
float w1 = b1.AngularVelocityInternal;
|
|
Vector2 v2 = b2.LinearVelocityInternal;
|
|
float w2 = b2.AngularVelocityInternal;
|
|
|
|
// Solve linear motor constraint.
|
|
if (_enableMotor && _limitState != LimitState.Equal)
|
|
{
|
|
float Cdot = Vector2.Dot(_axis, v2 - v1) + _a2 * w2 - _a1 * w1;
|
|
float impulse = _motorMass * (_motorSpeed - Cdot);
|
|
float oldImpulse = _motorImpulse;
|
|
float maxImpulse = step.dt * _maxMotorForce;
|
|
_motorImpulse = MathUtils.Clamp(_motorImpulse + impulse, -maxImpulse, maxImpulse);
|
|
impulse = _motorImpulse - oldImpulse;
|
|
|
|
Vector2 P = impulse * _axis;
|
|
float L1 = impulse * _a1;
|
|
float L2 = impulse * _a2;
|
|
|
|
v1 -= InvMassA * P;
|
|
w1 -= InvIA * L1;
|
|
|
|
v2 += InvMassB * P;
|
|
w2 += InvIB * L2;
|
|
}
|
|
|
|
Vector2 Cdot1 = new Vector2(Vector2.Dot(_perp, v2 - v1) + _s2 * w2 - _s1 * w1, w2 - w1);
|
|
|
|
if (_enableLimit && _limitState != LimitState.Inactive)
|
|
{
|
|
// Solve prismatic and limit constraint in block form.
|
|
float Cdot2 = Vector2.Dot(_axis, v2 - v1) + _a2 * w2 - _a1 * w1;
|
|
Vector3 Cdot = new Vector3(Cdot1.X, Cdot1.Y, Cdot2);
|
|
|
|
Vector3 f1 = _impulse;
|
|
Vector3 df = _K.Solve33(-Cdot);
|
|
_impulse += df;
|
|
|
|
if (_limitState == LimitState.AtLower)
|
|
{
|
|
_impulse.Z = Math.Max(_impulse.Z, 0.0f);
|
|
}
|
|
else if (_limitState == LimitState.AtUpper)
|
|
{
|
|
_impulse.Z = Math.Min(_impulse.Z, 0.0f);
|
|
}
|
|
|
|
// f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2)
|
|
Vector2 b = -Cdot1 - (_impulse.Z - f1.Z) * new Vector2(_K.Col3.X, _K.Col3.Y);
|
|
Vector2 f2r = _K.Solve22(b) + new Vector2(f1.X, f1.Y);
|
|
_impulse.X = f2r.X;
|
|
_impulse.Y = f2r.Y;
|
|
|
|
df = _impulse - f1;
|
|
|
|
Vector2 P = df.X * _perp + df.Z * _axis;
|
|
float L1 = df.X * _s1 + df.Y + df.Z * _a1;
|
|
float L2 = df.X * _s2 + df.Y + df.Z * _a2;
|
|
|
|
v1 -= InvMassA * P;
|
|
w1 -= InvIA * L1;
|
|
|
|
v2 += InvMassB * P;
|
|
w2 += InvIB * L2;
|
|
}
|
|
else
|
|
{
|
|
// Limit is inactive, just solve the prismatic constraint in block form.
|
|
Vector2 df = _K.Solve22(-Cdot1);
|
|
_impulse.X += df.X;
|
|
_impulse.Y += df.Y;
|
|
|
|
Vector2 P = df.X * _perp;
|
|
float L1 = df.X * _s1 + df.Y;
|
|
float L2 = df.X * _s2 + df.Y;
|
|
|
|
v1 -= InvMassA * P;
|
|
w1 -= InvIA * L1;
|
|
|
|
v2 += InvMassB * P;
|
|
w2 += InvIB * L2;
|
|
}
|
|
|
|
b1.LinearVelocityInternal = v1;
|
|
b1.AngularVelocityInternal = w1;
|
|
b2.LinearVelocityInternal = v2;
|
|
b2.AngularVelocityInternal = w2;
|
|
}
|
|
|
|
internal override bool SolvePositionConstraints()
|
|
{
|
|
Body b1 = BodyA;
|
|
Body b2 = BodyB;
|
|
|
|
Vector2 c1 = b1.Sweep.C;
|
|
float a1 = b1.Sweep.A;
|
|
|
|
Vector2 c2 = b2.Sweep.C;
|
|
float a2 = b2.Sweep.A;
|
|
|
|
// Solve linear limit constraint.
|
|
float linearError = 0.0f;
|
|
bool active = false;
|
|
float C2 = 0.0f;
|
|
|
|
Mat22 R1 = new Mat22(a1);
|
|
Mat22 R2 = new Mat22(a2);
|
|
|
|
Vector2 r1 = MathUtils.Multiply(ref R1, LocalAnchorA - LocalCenterA);
|
|
Vector2 r2 = MathUtils.Multiply(ref R2, LocalAnchorB - LocalCenterB);
|
|
Vector2 d = c2 + r2 - c1 - r1;
|
|
|
|
if (_enableLimit)
|
|
{
|
|
_axis = MathUtils.Multiply(ref R1, _localXAxis1);
|
|
|
|
_a1 = MathUtils.Cross(d + r1, _axis);
|
|
_a2 = MathUtils.Cross(r2, _axis);
|
|
|
|
float translation = Vector2.Dot(_axis, d);
|
|
if (Math.Abs(_upperTranslation - _lowerTranslation) < 2.0f * Settings.LinearSlop)
|
|
{
|
|
// Prevent large angular corrections
|
|
C2 = MathUtils.Clamp(translation, -Settings.MaxLinearCorrection, Settings.MaxLinearCorrection);
|
|
linearError = Math.Abs(translation);
|
|
active = true;
|
|
}
|
|
else if (translation <= _lowerTranslation)
|
|
{
|
|
// Prevent large linear corrections and allow some slop.
|
|
C2 = MathUtils.Clamp(translation - _lowerTranslation + Settings.LinearSlop,
|
|
-Settings.MaxLinearCorrection, 0.0f);
|
|
linearError = _lowerTranslation - translation;
|
|
active = true;
|
|
}
|
|
else if (translation >= _upperTranslation)
|
|
{
|
|
// Prevent large linear corrections and allow some slop.
|
|
C2 = MathUtils.Clamp(translation - _upperTranslation - Settings.LinearSlop, 0.0f,
|
|
Settings.MaxLinearCorrection);
|
|
linearError = translation - _upperTranslation;
|
|
active = true;
|
|
}
|
|
}
|
|
|
|
_perp = MathUtils.Multiply(ref R1, _localYAxis1);
|
|
|
|
_s1 = MathUtils.Cross(d + r1, _perp);
|
|
_s2 = MathUtils.Cross(r2, _perp);
|
|
|
|
Vector3 impulse;
|
|
Vector2 C1 = new Vector2(Vector2.Dot(_perp, d), a2 - a1 - ReferenceAngle);
|
|
|
|
linearError = Math.Max(linearError, Math.Abs(C1.X));
|
|
float angularError = Math.Abs(C1.Y);
|
|
|
|
if (active)
|
|
{
|
|
float m1 = InvMassA, m2 = InvMassB;
|
|
float i1 = InvIA, i2 = InvIB;
|
|
|
|
float k11 = m1 + m2 + i1 * _s1 * _s1 + i2 * _s2 * _s2;
|
|
float k12 = i1 * _s1 + i2 * _s2;
|
|
float k13 = i1 * _s1 * _a1 + i2 * _s2 * _a2;
|
|
float k22 = i1 + i2;
|
|
float k23 = i1 * _a1 + i2 * _a2;
|
|
float k33 = m1 + m2 + i1 * _a1 * _a1 + i2 * _a2 * _a2;
|
|
|
|
_K.Col1 = new Vector3(k11, k12, k13);
|
|
_K.Col2 = new Vector3(k12, k22, k23);
|
|
_K.Col3 = new Vector3(k13, k23, k33);
|
|
|
|
Vector3 C = new Vector3(-C1.X, -C1.Y, -C2);
|
|
impulse = _K.Solve33(C); // negated above
|
|
}
|
|
else
|
|
{
|
|
float m1 = InvMassA, m2 = InvMassB;
|
|
float i1 = InvIA, i2 = InvIB;
|
|
|
|
float k11 = m1 + m2 + i1 * _s1 * _s1 + i2 * _s2 * _s2;
|
|
float k12 = i1 * _s1 + i2 * _s2;
|
|
float k22 = i1 + i2;
|
|
|
|
_K.Col1 = new Vector3(k11, k12, 0.0f);
|
|
_K.Col2 = new Vector3(k12, k22, 0.0f);
|
|
|
|
Vector2 impulse1 = _K.Solve22(-C1);
|
|
impulse.X = impulse1.X;
|
|
impulse.Y = impulse1.Y;
|
|
impulse.Z = 0.0f;
|
|
}
|
|
|
|
Vector2 P = impulse.X * _perp + impulse.Z * _axis;
|
|
float L1 = impulse.X * _s1 + impulse.Y + impulse.Z * _a1;
|
|
float L2 = impulse.X * _s2 + impulse.Y + impulse.Z * _a2;
|
|
|
|
c1 -= InvMassA * P;
|
|
a1 -= InvIA * L1;
|
|
c2 += InvMassB * P;
|
|
a2 += InvIB * L2;
|
|
|
|
// TODO_ERIN remove need for this.
|
|
b1.Sweep.C = c1;
|
|
b1.Sweep.A = a1;
|
|
b2.Sweep.C = c2;
|
|
b2.Sweep.A = a2;
|
|
b1.SynchronizeTransform();
|
|
b2.SynchronizeTransform();
|
|
|
|
return linearError <= Settings.LinearSlop && angularError <= Settings.AngularSlop;
|
|
}
|
|
}
|
|
} |