axiosengine/axios/Collision/Shapes/EdgeShape.cs
2012-03-19 18:57:59 -05:00

266 lines
8.7 KiB
C#

/*
* Farseer Physics Engine based on Box2D.XNA port:
* Copyright (c) 2010 Ian Qvist
*
* Box2D.XNA port of Box2D:
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
*
* Original source Box2D:
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
using FarseerPhysics.Common;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Collision.Shapes
{
/// <summary>
/// A line segment (edge) Shape. These can be connected in chains or loops
/// to other edge Shapes. The connectivity information is used to ensure
/// correct contact normals.
/// </summary>
public class EdgeShape : Shape
{
public bool HasVertex0, HasVertex3;
/// <summary>
/// Optional adjacent vertices. These are used for smooth collision.
/// </summary>
public Vector2 Vertex0;
/// <summary>
/// Optional adjacent vertices. These are used for smooth collision.
/// </summary>
public Vector2 Vertex3;
/// <summary>
/// Edge start vertex
/// </summary>
private Vector2 _vertex1;
/// <summary>
/// Edge end vertex
/// </summary>
private Vector2 _vertex2;
internal EdgeShape()
: base(0)
{
ShapeType = ShapeType.Edge;
_radius = Settings.PolygonRadius;
}
public EdgeShape(Vector2 start, Vector2 end)
: base(0)
{
ShapeType = ShapeType.Edge;
_radius = Settings.PolygonRadius;
Set(start, end);
}
public override int ChildCount
{
get { return 1; }
}
/// <summary>
/// These are the edge vertices
/// </summary>
public Vector2 Vertex1
{
get { return _vertex1; }
set
{
_vertex1 = value;
ComputeProperties();
}
}
/// <summary>
/// These are the edge vertices
/// </summary>
public Vector2 Vertex2
{
get { return _vertex2; }
set
{
_vertex2 = value;
ComputeProperties();
}
}
/// <summary>
/// Set this as an isolated edge.
/// </summary>
/// <param name="start">The start.</param>
/// <param name="end">The end.</param>
public void Set(Vector2 start, Vector2 end)
{
_vertex1 = start;
_vertex2 = end;
HasVertex0 = false;
HasVertex3 = false;
ComputeProperties();
}
public override Shape Clone()
{
EdgeShape edge = new EdgeShape();
edge._radius = _radius;
edge._density = _density;
edge.HasVertex0 = HasVertex0;
edge.HasVertex3 = HasVertex3;
edge.Vertex0 = Vertex0;
edge._vertex1 = _vertex1;
edge._vertex2 = _vertex2;
edge.Vertex3 = Vertex3;
edge.MassData = MassData;
return edge;
}
/// <summary>
/// Test a point for containment in this shape. This only works for convex shapes.
/// </summary>
/// <param name="transform">The shape world transform.</param>
/// <param name="point">a point in world coordinates.</param>
/// <returns>True if the point is inside the shape</returns>
public override bool TestPoint(ref Transform transform, ref Vector2 point)
{
return false;
}
/// <summary>
/// Cast a ray against a child shape.
/// </summary>
/// <param name="output">The ray-cast results.</param>
/// <param name="input">The ray-cast input parameters.</param>
/// <param name="transform">The transform to be applied to the shape.</param>
/// <param name="childIndex">The child shape index.</param>
/// <returns>True if the ray-cast hits the shape</returns>
public override bool RayCast(out RayCastOutput output, ref RayCastInput input,
ref Transform transform, int childIndex)
{
// p = p1 + t * d
// v = v1 + s * e
// p1 + t * d = v1 + s * e
// s * e - t * d = p1 - v1
output = new RayCastOutput();
// Put the ray into the edge's frame of reference.
Vector2 p1 = MathUtils.MultiplyT(ref transform.R, input.Point1 - transform.Position);
Vector2 p2 = MathUtils.MultiplyT(ref transform.R, input.Point2 - transform.Position);
Vector2 d = p2 - p1;
Vector2 v1 = _vertex1;
Vector2 v2 = _vertex2;
Vector2 e = v2 - v1;
Vector2 normal = new Vector2(e.Y, -e.X);
normal.Normalize();
// q = p1 + t * d
// dot(normal, q - v1) = 0
// dot(normal, p1 - v1) + t * dot(normal, d) = 0
float numerator = Vector2.Dot(normal, v1 - p1);
float denominator = Vector2.Dot(normal, d);
if (denominator == 0.0f)
{
return false;
}
float t = numerator / denominator;
if (t < 0.0f || 1.0f < t)
{
return false;
}
Vector2 q = p1 + t * d;
// q = v1 + s * r
// s = dot(q - v1, r) / dot(r, r)
Vector2 r = v2 - v1;
float rr = Vector2.Dot(r, r);
if (rr == 0.0f)
{
return false;
}
float s = Vector2.Dot(q - v1, r) / rr;
if (s < 0.0f || 1.0f < s)
{
return false;
}
output.Fraction = t;
if (numerator > 0.0f)
{
output.Normal = -normal;
}
else
{
output.Normal = normal;
}
return true;
}
/// <summary>
/// Given a transform, compute the associated axis aligned bounding box for a child shape.
/// </summary>
/// <param name="aabb">The aabb results.</param>
/// <param name="transform">The world transform of the shape.</param>
/// <param name="childIndex">The child shape index.</param>
public override void ComputeAABB(out AABB aabb, ref Transform transform, int childIndex)
{
Vector2 v1 = MathUtils.Multiply(ref transform, _vertex1);
Vector2 v2 = MathUtils.Multiply(ref transform, _vertex2);
Vector2 lower = Vector2.Min(v1, v2);
Vector2 upper = Vector2.Max(v1, v2);
Vector2 r = new Vector2(Radius, Radius);
aabb.LowerBound = lower - r;
aabb.UpperBound = upper + r;
}
/// <summary>
/// Compute the mass properties of this shape using its dimensions and density.
/// The inertia tensor is computed about the local origin, not the centroid.
/// </summary>
public override void ComputeProperties()
{
MassData.Centroid = 0.5f * (_vertex1 + _vertex2);
}
public override float ComputeSubmergedArea(Vector2 normal, float offset, Transform xf, out Vector2 sc)
{
sc = Vector2.Zero;
return 0;
}
public bool CompareTo(EdgeShape shape)
{
return (HasVertex0 == shape.HasVertex0 &&
HasVertex3 == shape.HasVertex3 &&
Vertex0 == shape.Vertex0 &&
Vertex1 == shape.Vertex1 &&
Vertex2 == shape.Vertex2 &&
Vertex3 == shape.Vertex3);
}
}
}