298 lines
10 KiB
C#
298 lines
10 KiB
C#
/*
|
|
* Farseer Physics Engine based on Box2D.XNA port:
|
|
* Copyright (c) 2010 Ian Qvist
|
|
*
|
|
* Box2D.XNA port of Box2D:
|
|
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
|
*
|
|
* Original source Box2D:
|
|
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
using System;
|
|
using System.Diagnostics;
|
|
using FarseerPhysics.Common;
|
|
using Microsoft.Xna.Framework;
|
|
|
|
namespace FarseerPhysics.Dynamics.Joints
|
|
{
|
|
/// <summary>
|
|
/// A distance joint contrains two points on two bodies
|
|
/// to remain at a fixed distance from each other. You can view
|
|
/// this as a massless, rigid rod.
|
|
/// </summary>
|
|
public class SliderJoint : Joint
|
|
{
|
|
// 1-D constrained system
|
|
// m (v2 - v1) = lambda
|
|
// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
|
|
// x2 = x1 + h * v2
|
|
|
|
// 1-D mass-damper-spring system
|
|
// m (v2 - v1) + h * d * v2 + h * k *
|
|
|
|
// C = norm(p2 - p1) - L
|
|
// u = (p2 - p1) / norm(p2 - p1)
|
|
// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
|
// J = [-u -cross(r1, u) u cross(r2, u)]
|
|
// K = J * invM * JT
|
|
// = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
|
|
|
|
public Vector2 LocalAnchorA;
|
|
|
|
public Vector2 LocalAnchorB;
|
|
private float _bias;
|
|
private float _gamma;
|
|
private float _impulse;
|
|
private float _mass;
|
|
private Vector2 _u;
|
|
|
|
internal SliderJoint()
|
|
{
|
|
JointType = JointType.Slider;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="SliderJoint"/> class.
|
|
/// Warning: Do not use a zero or short length.
|
|
/// </summary>
|
|
/// <param name="bodyA">The first body.</param>
|
|
/// <param name="bodyB">The second body.</param>
|
|
/// <param name="localAnchorA">The first body anchor.</param>
|
|
/// <param name="localAnchorB">The second body anchor.</param>
|
|
/// <param name="minLength">The minimum length between anchorpoints</param>
|
|
/// <param name="maxlength">The maximum length between anchorpoints.</param>
|
|
public SliderJoint(Body bodyA, Body bodyB, Vector2 localAnchorA, Vector2 localAnchorB, float minLength,
|
|
float maxlength)
|
|
: base(bodyA, bodyB)
|
|
{
|
|
JointType = JointType.Slider;
|
|
|
|
LocalAnchorA = localAnchorA;
|
|
LocalAnchorB = localAnchorB;
|
|
MaxLength = maxlength;
|
|
MinLength = minLength;
|
|
}
|
|
|
|
/// <summary>
|
|
/// The maximum length between the anchor points.
|
|
/// </summary>
|
|
/// <value>The length.</value>
|
|
public float MaxLength { get; set; }
|
|
|
|
/// <summary>
|
|
/// The minimal length between the anchor points.
|
|
/// </summary>
|
|
/// <value>The length.</value>
|
|
public float MinLength { get; set; }
|
|
|
|
/// <summary>
|
|
/// The mass-spring-damper frequency in Hertz.
|
|
/// </summary>
|
|
/// <value>The frequency.</value>
|
|
public float Frequency { get; set; }
|
|
|
|
/// <summary>
|
|
/// The damping ratio. 0 = no damping, 1 = critical damping.
|
|
/// </summary>
|
|
/// <value>The damping ratio.</value>
|
|
public float DampingRatio { get; set; }
|
|
|
|
public override Vector2 WorldAnchorA
|
|
{
|
|
get { return BodyA.GetWorldPoint(LocalAnchorA); }
|
|
}
|
|
|
|
public override Vector2 WorldAnchorB
|
|
{
|
|
get { return BodyB.GetWorldPoint(LocalAnchorB); }
|
|
set { Debug.Assert(false, "You can't set the world anchor on this joint type."); }
|
|
}
|
|
|
|
public override Vector2 GetReactionForce(float inv_dt)
|
|
{
|
|
Vector2 F = (inv_dt * _impulse) * _u;
|
|
return F;
|
|
}
|
|
|
|
public override float GetReactionTorque(float inv_dt)
|
|
{
|
|
return 0.0f;
|
|
}
|
|
|
|
internal override void InitVelocityConstraints(ref TimeStep step)
|
|
{
|
|
Body b1 = BodyA;
|
|
Body b2 = BodyB;
|
|
|
|
Transform xf1, xf2;
|
|
b1.GetTransform(out xf1);
|
|
b2.GetTransform(out xf2);
|
|
|
|
// Compute the effective mass matrix.
|
|
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b1.LocalCenter);
|
|
Vector2 r2 = MathUtils.Multiply(ref xf2.R, LocalAnchorB - b2.LocalCenter);
|
|
_u = b2.Sweep.C + r2 - b1.Sweep.C - r1;
|
|
|
|
// Handle singularity.
|
|
float length = _u.Length();
|
|
|
|
if (length < MaxLength && length > MinLength)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (length > Settings.LinearSlop)
|
|
{
|
|
_u *= 1.0f / length;
|
|
}
|
|
else
|
|
{
|
|
_u = Vector2.Zero;
|
|
}
|
|
|
|
float cr1u = MathUtils.Cross(r1, _u);
|
|
float cr2u = MathUtils.Cross(r2, _u);
|
|
float invMass = b1.InvMass + b1.InvI * cr1u * cr1u + b2.InvMass + b2.InvI * cr2u * cr2u;
|
|
Debug.Assert(invMass > Settings.Epsilon);
|
|
_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
|
|
|
|
if (Frequency > 0.0f)
|
|
{
|
|
float C = length - MaxLength;
|
|
|
|
// Frequency
|
|
float omega = 2.0f * Settings.Pi * Frequency;
|
|
|
|
// Damping coefficient
|
|
float d = 2.0f * _mass * DampingRatio * omega;
|
|
|
|
// Spring stiffness
|
|
float k = _mass * omega * omega;
|
|
|
|
// magic formulas
|
|
_gamma = step.dt * (d + step.dt * k);
|
|
_gamma = _gamma != 0.0f ? 1.0f / _gamma : 0.0f;
|
|
_bias = C * step.dt * k * _gamma;
|
|
|
|
_mass = invMass + _gamma;
|
|
_mass = _mass != 0.0f ? 1.0f / _mass : 0.0f;
|
|
}
|
|
|
|
if (Settings.EnableWarmstarting)
|
|
{
|
|
// Scale the impulse to support a variable time step.
|
|
_impulse *= step.dtRatio;
|
|
|
|
Vector2 P = _impulse * _u;
|
|
b1.LinearVelocityInternal -= b1.InvMass * P;
|
|
b1.AngularVelocityInternal -= b1.InvI * MathUtils.Cross(r1, P);
|
|
b2.LinearVelocityInternal += b2.InvMass * P;
|
|
b2.AngularVelocityInternal += b2.InvI * MathUtils.Cross(r2, P);
|
|
}
|
|
else
|
|
{
|
|
_impulse = 0.0f;
|
|
}
|
|
}
|
|
|
|
internal override void SolveVelocityConstraints(ref TimeStep step)
|
|
{
|
|
Body b1 = BodyA;
|
|
Body b2 = BodyB;
|
|
|
|
Transform xf1, xf2;
|
|
b1.GetTransform(out xf1);
|
|
b2.GetTransform(out xf2);
|
|
|
|
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b1.LocalCenter);
|
|
Vector2 r2 = MathUtils.Multiply(ref xf2.R, LocalAnchorB - b2.LocalCenter);
|
|
|
|
Vector2 d = b2.Sweep.C + r2 - b1.Sweep.C - r1;
|
|
|
|
float length = d.Length();
|
|
|
|
if (length < MaxLength && length > MinLength)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Cdot = dot(u, v + cross(w, r))
|
|
Vector2 v1 = b1.LinearVelocityInternal + MathUtils.Cross(b1.AngularVelocityInternal, r1);
|
|
Vector2 v2 = b2.LinearVelocityInternal + MathUtils.Cross(b2.AngularVelocityInternal, r2);
|
|
float Cdot = Vector2.Dot(_u, v2 - v1);
|
|
|
|
float impulse = -_mass * (Cdot + _bias + _gamma * _impulse);
|
|
_impulse += impulse;
|
|
|
|
Vector2 P = impulse * _u;
|
|
b1.LinearVelocityInternal -= b1.InvMass * P;
|
|
b1.AngularVelocityInternal -= b1.InvI * MathUtils.Cross(r1, P);
|
|
b2.LinearVelocityInternal += b2.InvMass * P;
|
|
b2.AngularVelocityInternal += b2.InvI * MathUtils.Cross(r2, P);
|
|
}
|
|
|
|
internal override bool SolvePositionConstraints()
|
|
{
|
|
if (Frequency > 0.0f)
|
|
{
|
|
// There is no position correction for soft distance constraints.
|
|
return true;
|
|
}
|
|
|
|
Body b1 = BodyA;
|
|
Body b2 = BodyB;
|
|
|
|
Transform xf1, xf2;
|
|
b1.GetTransform(out xf1);
|
|
b2.GetTransform(out xf2);
|
|
|
|
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b1.LocalCenter);
|
|
Vector2 r2 = MathUtils.Multiply(ref xf2.R, LocalAnchorB - b2.LocalCenter);
|
|
|
|
Vector2 d = b2.Sweep.C + r2 - b1.Sweep.C - r1;
|
|
|
|
float length = d.Length();
|
|
|
|
if (length < MaxLength && length > MinLength)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (length == 0.0f)
|
|
return true;
|
|
|
|
d /= length;
|
|
float C = length - MaxLength;
|
|
C = MathUtils.Clamp(C, -Settings.MaxLinearCorrection, Settings.MaxLinearCorrection);
|
|
|
|
float impulse = -_mass * C;
|
|
_u = d;
|
|
Vector2 P = impulse * _u;
|
|
|
|
b1.Sweep.C -= b1.InvMass * P;
|
|
b1.Sweep.A -= b1.InvI * MathUtils.Cross(r1, P);
|
|
b2.Sweep.C += b2.InvMass * P;
|
|
b2.Sweep.A += b2.InvI * MathUtils.Cross(r2, P);
|
|
|
|
b1.SynchronizeTransform();
|
|
b2.SynchronizeTransform();
|
|
|
|
return Math.Abs(C) < Settings.LinearSlop;
|
|
}
|
|
}
|
|
} |