239 lines
7.7 KiB
C#
239 lines
7.7 KiB
C#
/*
|
|
* Copyright (c) 2006-2010 Erin Catto http://www.gphysics.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
using System;
|
|
using System.Diagnostics;
|
|
using FarseerPhysics.Common;
|
|
using Microsoft.Xna.Framework;
|
|
|
|
namespace FarseerPhysics.Dynamics.Joints
|
|
{
|
|
// Limit:
|
|
// C = norm(pB - pA) - L
|
|
// u = (pB - pA) / norm(pB - pA)
|
|
// Cdot = dot(u, vB + cross(wB, rB) - vA - cross(wA, rA))
|
|
// J = [-u -cross(rA, u) u cross(rB, u)]
|
|
// K = J * invM * JT
|
|
// = invMassA + invIA * cross(rA, u)^2 + invMassB + invIB * cross(rB, u)^2
|
|
|
|
/// <summary>
|
|
/// A rope joint enforces a maximum distance between two points
|
|
/// on two bodies. It has no other effect.
|
|
/// Warning: if you attempt to change the maximum length during
|
|
/// the simulation you will get some non-physical behavior.
|
|
/// A model that would allow you to dynamically modify the length
|
|
/// would have some sponginess, so I chose not to implement it
|
|
/// that way. See b2DistanceJoint if you want to dynamically
|
|
/// control length.
|
|
/// </summary>
|
|
public class RopeJoint : Joint
|
|
{
|
|
public Vector2 LocalAnchorA;
|
|
public Vector2 LocalAnchorB;
|
|
|
|
private float _impulse;
|
|
private float _length;
|
|
|
|
private float _mass;
|
|
private Vector2 _rA, _rB;
|
|
private LimitState _state;
|
|
private Vector2 _u;
|
|
|
|
internal RopeJoint()
|
|
{
|
|
JointType = JointType.Rope;
|
|
}
|
|
|
|
public RopeJoint(Body bodyA, Body bodyB, Vector2 localAnchorA, Vector2 localAnchorB)
|
|
: base(bodyA, bodyB)
|
|
{
|
|
JointType = JointType.Rope;
|
|
LocalAnchorA = localAnchorA;
|
|
LocalAnchorB = localAnchorB;
|
|
|
|
Vector2 d = WorldAnchorB - WorldAnchorA;
|
|
MaxLength = d.Length();
|
|
|
|
_mass = 0.0f;
|
|
_impulse = 0.0f;
|
|
_state = LimitState.Inactive;
|
|
_length = 0.0f;
|
|
}
|
|
|
|
/// Get the maximum length of the rope.
|
|
public float MaxLength { get; set; }
|
|
|
|
public LimitState State
|
|
{
|
|
get { return _state; }
|
|
}
|
|
|
|
public override sealed Vector2 WorldAnchorA
|
|
{
|
|
get { return BodyA.GetWorldPoint(LocalAnchorA); }
|
|
}
|
|
|
|
public override sealed Vector2 WorldAnchorB
|
|
{
|
|
get { return BodyB.GetWorldPoint(LocalAnchorB); }
|
|
set { Debug.Assert(false, "You can't set the world anchor on this joint type."); }
|
|
}
|
|
|
|
public override Vector2 GetReactionForce(float invDt)
|
|
{
|
|
return (invDt * _impulse) * _u;
|
|
}
|
|
|
|
public override float GetReactionTorque(float invDt)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
internal override void InitVelocityConstraints(ref TimeStep step)
|
|
{
|
|
Body bA = BodyA;
|
|
Body bB = BodyB;
|
|
|
|
Transform xf1;
|
|
bA.GetTransform(out xf1);
|
|
|
|
Transform xf2;
|
|
bB.GetTransform(out xf2);
|
|
|
|
_rA = MathUtils.Multiply(ref xf1.R, LocalAnchorA - bA.LocalCenter);
|
|
_rB = MathUtils.Multiply(ref xf2.R, LocalAnchorB - bB.LocalCenter);
|
|
|
|
// Rope axis
|
|
_u = bB.Sweep.C + _rB - bA.Sweep.C - _rA;
|
|
|
|
_length = _u.Length();
|
|
|
|
float C = _length - MaxLength;
|
|
if (C > 0.0f)
|
|
{
|
|
_state = LimitState.AtUpper;
|
|
}
|
|
else
|
|
{
|
|
_state = LimitState.Inactive;
|
|
}
|
|
|
|
if (_length > Settings.LinearSlop)
|
|
{
|
|
_u *= 1.0f / _length;
|
|
}
|
|
else
|
|
{
|
|
_u = Vector2.Zero;
|
|
_mass = 0.0f;
|
|
_impulse = 0.0f;
|
|
return;
|
|
}
|
|
|
|
// Compute effective mass.
|
|
float crA = MathUtils.Cross(_rA, _u);
|
|
float crB = MathUtils.Cross(_rB, _u);
|
|
float invMass = bA.InvMass + bA.InvI * crA * crA + bB.InvMass + bB.InvI * crB * crB;
|
|
|
|
_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
|
|
|
|
if (Settings.EnableWarmstarting)
|
|
{
|
|
// Scale the impulse to support a variable time step.
|
|
_impulse *= step.dtRatio;
|
|
|
|
Vector2 P = _impulse * _u;
|
|
bA.LinearVelocity -= bA.InvMass * P;
|
|
bA.AngularVelocity -= bA.InvI * MathUtils.Cross(_rA, P);
|
|
bB.LinearVelocity += bB.InvMass * P;
|
|
bB.AngularVelocity += bB.InvI * MathUtils.Cross(_rB, P);
|
|
}
|
|
else
|
|
{
|
|
_impulse = 0.0f;
|
|
}
|
|
}
|
|
|
|
internal override void SolveVelocityConstraints(ref TimeStep step)
|
|
{
|
|
Body bA = BodyA;
|
|
Body bB = BodyB;
|
|
|
|
// Cdot = dot(u, v + cross(w, r))
|
|
Vector2 vA = bA.LinearVelocity + MathUtils.Cross(bA.AngularVelocity, _rA);
|
|
Vector2 vB = bB.LinearVelocity + MathUtils.Cross(bB.AngularVelocity, _rB);
|
|
float C = _length - MaxLength;
|
|
float Cdot = Vector2.Dot(_u, vB - vA);
|
|
|
|
// Predictive constraint.
|
|
if (C < 0.0f)
|
|
{
|
|
Cdot += step.inv_dt * C;
|
|
}
|
|
|
|
float impulse = -_mass * Cdot;
|
|
float oldImpulse = _impulse;
|
|
_impulse = Math.Min(0.0f, _impulse + impulse);
|
|
impulse = _impulse - oldImpulse;
|
|
|
|
Vector2 P = impulse * _u;
|
|
bA.LinearVelocity -= bA.InvMass * P;
|
|
bA.AngularVelocity -= bA.InvI * MathUtils.Cross(_rA, P);
|
|
bB.LinearVelocity += bB.InvMass * P;
|
|
bB.AngularVelocity += bB.InvI * MathUtils.Cross(_rB, P);
|
|
}
|
|
|
|
internal override bool SolvePositionConstraints()
|
|
{
|
|
Body bA = BodyA;
|
|
Body bB = BodyB;
|
|
|
|
Transform xf1;
|
|
bA.GetTransform(out xf1);
|
|
|
|
Transform xf2;
|
|
bB.GetTransform(out xf2);
|
|
|
|
Vector2 rA = MathUtils.Multiply(ref xf1.R, LocalAnchorA - bA.LocalCenter);
|
|
Vector2 rB = MathUtils.Multiply(ref xf2.R, LocalAnchorB - bB.LocalCenter);
|
|
|
|
Vector2 u = bB.Sweep.C + rB - bA.Sweep.C - rA;
|
|
|
|
|
|
float length = u.Length();
|
|
u.Normalize();
|
|
|
|
float C = length - MaxLength;
|
|
|
|
C = MathUtils.Clamp(C, 0.0f, Settings.MaxLinearCorrection);
|
|
|
|
float impulse = -_mass * C;
|
|
Vector2 P = impulse * u;
|
|
|
|
bA.Sweep.C -= bA.InvMass * P;
|
|
bA.Sweep.A -= bA.InvI * MathUtils.Cross(rA, P);
|
|
bB.Sweep.C += bB.InvMass * P;
|
|
bB.Sweep.A += bB.InvI * MathUtils.Cross(rB, P);
|
|
|
|
bA.SynchronizeTransform();
|
|
bB.SynchronizeTransform();
|
|
|
|
return length - MaxLength < Settings.LinearSlop;
|
|
}
|
|
}
|
|
} |