axiosengine/axios/Common/Decomposition/CDTDecomposer.cs
2012-03-19 18:57:59 -05:00

110 lines
4.1 KiB
C#

/* Poly2Tri
* Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System.Collections.Generic;
using Microsoft.Xna.Framework;
using Poly2Tri.Triangulation;
using Poly2Tri.Triangulation.Delaunay;
using Poly2Tri.Triangulation.Delaunay.Sweep;
using Poly2Tri.Triangulation.Polygon;
using System.Linq;
namespace FarseerPhysics.Common.Decomposition
{
public static class CDTDecomposer
{
public static List<Vertices> ConvexPartition(Vertices vertices)
{
Polygon poly = new Polygon();
foreach (Vector2 vertex in vertices)
{
poly.Points.Add(new TriangulationPoint(vertex.X, vertex.Y));
}
DTSweepContext tcx = new DTSweepContext();
tcx.PrepareTriangulation(poly);
DTSweep.Triangulate(tcx);
List<Vertices> results = new List<Vertices>();
foreach (DelaunayTriangle triangle in poly.Triangles)
{
Vertices v = new Vertices();
foreach (TriangulationPoint p in triangle.Points)
{
v.Add(new Vector2((float)p.X, (float)p.Y));
}
results.Add(v);
}
return results;
}
public static List<Vertices> ConvexPartition(DetectedVertices vertices)
{
Polygon poly = new Polygon();
foreach (var vertex in vertices)
poly.Points.Add(new TriangulationPoint(vertex.X, vertex.Y));
if (vertices.Holes != null)
{
foreach (var holeVertices in vertices.Holes)
{
Polygon hole = new Polygon();
foreach (var vertex in holeVertices)
hole.Points.Add(new TriangulationPoint(vertex.X, vertex.Y));
poly.AddHole(hole);
}
}
DTSweepContext tcx = new DTSweepContext();
tcx.PrepareTriangulation(poly);
DTSweep.Triangulate(tcx);
List<Vertices> results = new List<Vertices>();
foreach (DelaunayTriangle triangle in poly.Triangles)
{
Vertices v = new Vertices();
foreach (TriangulationPoint p in triangle.Points)
{
v.Add(new Vector2((float)p.X, (float)p.Y));
}
results.Add(v);
}
return results;
}
}
}