axiosengine/axios/Common/Decomposition/BayazitDecomposer.cs
2012-03-19 18:57:59 -05:00

253 lines
10 KiB
C#

using System.Collections.Generic;
using FarseerPhysics.Common.PolygonManipulation;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Common.Decomposition
{
//From phed rev 36
/// <summary>
/// Convex decomposition algorithm created by Mark Bayazit (http://mnbayazit.com/)
/// For more information about this algorithm, see http://mnbayazit.com/406/bayazit
/// </summary>
public static class BayazitDecomposer
{
private static Vector2 At(int i, Vertices vertices)
{
int s = vertices.Count;
return vertices[i < 0 ? s - (-i % s) : i % s];
}
private static Vertices Copy(int i, int j, Vertices vertices)
{
Vertices p = new Vertices();
while (j < i) j += vertices.Count;
//p.reserve(j - i + 1);
for (; i <= j; ++i)
{
p.Add(At(i, vertices));
}
return p;
}
/// <summary>
/// Decompose the polygon into several smaller non-concave polygon.
/// If the polygon is already convex, it will return the original polygon, unless it is over Settings.MaxPolygonVertices.
/// Precondition: Counter Clockwise polygon
/// </summary>
/// <param name="vertices"></param>
/// <returns></returns>
public static List<Vertices> ConvexPartition(Vertices vertices)
{
//We force it to CCW as it is a precondition in this algorithm.
vertices.ForceCounterClockWise();
List<Vertices> list = new List<Vertices>();
float d, lowerDist, upperDist;
Vector2 p;
Vector2 lowerInt = new Vector2();
Vector2 upperInt = new Vector2(); // intersection points
int lowerIndex = 0, upperIndex = 0;
Vertices lowerPoly, upperPoly;
for (int i = 0; i < vertices.Count; ++i)
{
if (Reflex(i, vertices))
{
lowerDist = upperDist = float.MaxValue; // std::numeric_limits<qreal>::max();
for (int j = 0; j < vertices.Count; ++j)
{
// if line intersects with an edge
if (Left(At(i - 1, vertices), At(i, vertices), At(j, vertices)) &&
RightOn(At(i - 1, vertices), At(i, vertices), At(j - 1, vertices)))
{
// find the point of intersection
p = LineTools.LineIntersect(At(i - 1, vertices), At(i, vertices), At(j, vertices),
At(j - 1, vertices));
if (Right(At(i + 1, vertices), At(i, vertices), p))
{
// make sure it's inside the poly
d = SquareDist(At(i, vertices), p);
if (d < lowerDist)
{
// keep only the closest intersection
lowerDist = d;
lowerInt = p;
lowerIndex = j;
}
}
}
if (Left(At(i + 1, vertices), At(i, vertices), At(j + 1, vertices)) &&
RightOn(At(i + 1, vertices), At(i, vertices), At(j, vertices)))
{
p = LineTools.LineIntersect(At(i + 1, vertices), At(i, vertices), At(j, vertices),
At(j + 1, vertices));
if (Left(At(i - 1, vertices), At(i, vertices), p))
{
d = SquareDist(At(i, vertices), p);
if (d < upperDist)
{
upperDist = d;
upperIndex = j;
upperInt = p;
}
}
}
}
// if there are no vertices to connect to, choose a point in the middle
if (lowerIndex == (upperIndex + 1) % vertices.Count)
{
Vector2 sp = ((lowerInt + upperInt) / 2);
lowerPoly = Copy(i, upperIndex, vertices);
lowerPoly.Add(sp);
upperPoly = Copy(lowerIndex, i, vertices);
upperPoly.Add(sp);
}
else
{
double highestScore = 0, bestIndex = lowerIndex;
while (upperIndex < lowerIndex) upperIndex += vertices.Count;
for (int j = lowerIndex; j <= upperIndex; ++j)
{
if (CanSee(i, j, vertices))
{
double score = 1 / (SquareDist(At(i, vertices), At(j, vertices)) + 1);
if (Reflex(j, vertices))
{
if (RightOn(At(j - 1, vertices), At(j, vertices), At(i, vertices)) &&
LeftOn(At(j + 1, vertices), At(j, vertices), At(i, vertices)))
{
score += 3;
}
else
{
score += 2;
}
}
else
{
score += 1;
}
if (score > highestScore)
{
bestIndex = j;
highestScore = score;
}
}
}
lowerPoly = Copy(i, (int)bestIndex, vertices);
upperPoly = Copy((int)bestIndex, i, vertices);
}
list.AddRange(ConvexPartition(lowerPoly));
list.AddRange(ConvexPartition(upperPoly));
return list;
}
}
// polygon is already convex
if (vertices.Count > Settings.MaxPolygonVertices)
{
lowerPoly = Copy(0, vertices.Count / 2, vertices);
upperPoly = Copy(vertices.Count / 2, 0, vertices);
list.AddRange(ConvexPartition(lowerPoly));
list.AddRange(ConvexPartition(upperPoly));
}
else
list.Add(vertices);
//The polygons are not guaranteed to be without collinear points. We remove
//them to be sure.
for (int i = 0; i < list.Count; i++)
{
list[i] = SimplifyTools.CollinearSimplify(list[i], 0);
}
//Remove empty vertice collections
for (int i = list.Count - 1; i >= 0; i--)
{
if (list[i].Count == 0)
list.RemoveAt(i);
}
return list;
}
private static bool CanSee(int i, int j, Vertices vertices)
{
if (Reflex(i, vertices))
{
if (LeftOn(At(i, vertices), At(i - 1, vertices), At(j, vertices)) &&
RightOn(At(i, vertices), At(i + 1, vertices), At(j, vertices))) return false;
}
else
{
if (RightOn(At(i, vertices), At(i + 1, vertices), At(j, vertices)) ||
LeftOn(At(i, vertices), At(i - 1, vertices), At(j, vertices))) return false;
}
if (Reflex(j, vertices))
{
if (LeftOn(At(j, vertices), At(j - 1, vertices), At(i, vertices)) &&
RightOn(At(j, vertices), At(j + 1, vertices), At(i, vertices))) return false;
}
else
{
if (RightOn(At(j, vertices), At(j + 1, vertices), At(i, vertices)) ||
LeftOn(At(j, vertices), At(j - 1, vertices), At(i, vertices))) return false;
}
for (int k = 0; k < vertices.Count; ++k)
{
if ((k + 1) % vertices.Count == i || k == i || (k + 1) % vertices.Count == j || k == j)
{
continue; // ignore incident edges
}
Vector2 intersectionPoint;
if (LineTools.LineIntersect(At(i, vertices), At(j, vertices), At(k, vertices), At(k + 1, vertices), out intersectionPoint))
{
return false;
}
}
return true;
}
// precondition: ccw
private static bool Reflex(int i, Vertices vertices)
{
return Right(i, vertices);
}
private static bool Right(int i, Vertices vertices)
{
return Right(At(i - 1, vertices), At(i, vertices), At(i + 1, vertices));
}
private static bool Left(Vector2 a, Vector2 b, Vector2 c)
{
return MathUtils.Area(ref a, ref b, ref c) > 0;
}
private static bool LeftOn(Vector2 a, Vector2 b, Vector2 c)
{
return MathUtils.Area(ref a, ref b, ref c) >= 0;
}
private static bool Right(Vector2 a, Vector2 b, Vector2 c)
{
return MathUtils.Area(ref a, ref b, ref c) < 0;
}
private static bool RightOn(Vector2 a, Vector2 b, Vector2 c)
{
return MathUtils.Area(ref a, ref b, ref c) <= 0;
}
private static float SquareDist(Vector2 a, Vector2 b)
{
float dx = b.X - a.X;
float dy = b.Y - a.Y;
return dx * dx + dy * dy;
}
}
}