axiosengine/axios/Common/PolygonManipulation/SimplifyTools.cs
2012-03-19 18:57:59 -05:00

359 lines
12 KiB
C#

using System;
using System.Collections.Generic;
using System.Diagnostics;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Common.PolygonManipulation
{
public static class SimplifyTools
{
private static bool[] _usePt;
private static double _distanceTolerance;
/// <summary>
/// Removes all collinear points on the polygon.
/// </summary>
/// <param name="vertices">The polygon that needs simplification.</param>
/// <param name="collinearityTolerance">The collinearity tolerance.</param>
/// <returns>A simplified polygon.</returns>
public static Vertices CollinearSimplify(Vertices vertices, float collinearityTolerance)
{
//We can't simplify polygons under 3 vertices
if (vertices.Count < 3)
return vertices;
Vertices simplified = new Vertices();
for (int i = 0; i < vertices.Count; i++)
{
int prevId = vertices.PreviousIndex(i);
int nextId = vertices.NextIndex(i);
Vector2 prev = vertices[prevId];
Vector2 current = vertices[i];
Vector2 next = vertices[nextId];
//If they collinear, continue
if (MathUtils.Collinear(ref prev, ref current, ref next, collinearityTolerance))
continue;
simplified.Add(current);
}
return simplified;
}
/// <summary>
/// Removes all collinear points on the polygon.
/// Has a default bias of 0
/// </summary>
/// <param name="vertices">The polygon that needs simplification.</param>
/// <returns>A simplified polygon.</returns>
public static Vertices CollinearSimplify(Vertices vertices)
{
return CollinearSimplify(vertices, 0);
}
/// <summary>
/// Ramer-Douglas-Peucker polygon simplification algorithm. This is the general recursive version that does not use the
/// speed-up technique by using the Melkman convex hull.
///
/// If you pass in 0, it will remove all collinear points
/// </summary>
/// <returns>The simplified polygon</returns>
public static Vertices DouglasPeuckerSimplify(Vertices vertices, float distanceTolerance)
{
_distanceTolerance = distanceTolerance;
_usePt = new bool[vertices.Count];
for (int i = 0; i < vertices.Count; i++)
_usePt[i] = true;
SimplifySection(vertices, 0, vertices.Count - 1);
Vertices result = new Vertices();
for (int i = 0; i < vertices.Count; i++)
if (_usePt[i])
result.Add(vertices[i]);
return result;
}
private static void SimplifySection(Vertices vertices, int i, int j)
{
if ((i + 1) == j)
return;
Vector2 A = vertices[i];
Vector2 B = vertices[j];
double maxDistance = -1.0;
int maxIndex = i;
for (int k = i + 1; k < j; k++)
{
double distance = DistancePointLine(vertices[k], A, B);
if (distance > maxDistance)
{
maxDistance = distance;
maxIndex = k;
}
}
if (maxDistance <= _distanceTolerance)
for (int k = i + 1; k < j; k++)
_usePt[k] = false;
else
{
SimplifySection(vertices, i, maxIndex);
SimplifySection(vertices, maxIndex, j);
}
}
private static double DistancePointPoint(Vector2 p, Vector2 p2)
{
double dx = p.X - p2.X;
double dy = p.Y - p2.X;
return Math.Sqrt(dx * dx + dy * dy);
}
private static double DistancePointLine(Vector2 p, Vector2 A, Vector2 B)
{
// if start == end, then use point-to-point distance
if (A.X == B.X && A.Y == B.Y)
return DistancePointPoint(p, A);
// otherwise use comp.graphics.algorithms Frequently Asked Questions method
/*(1) AC dot AB
r = ---------
||AB||^2
r has the following meaning:
r=0 Point = A
r=1 Point = B
r<0 Point is on the backward extension of AB
r>1 Point is on the forward extension of AB
0<r<1 Point is interior to AB
*/
double r = ((p.X - A.X) * (B.X - A.X) + (p.Y - A.Y) * (B.Y - A.Y))
/
((B.X - A.X) * (B.X - A.X) + (B.Y - A.Y) * (B.Y - A.Y));
if (r <= 0.0) return DistancePointPoint(p, A);
if (r >= 1.0) return DistancePointPoint(p, B);
/*(2)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = -----------------------------
Curve^2
Then the distance from C to Point = |s|*Curve.
*/
double s = ((A.Y - p.Y) * (B.X - A.X) - (A.X - p.X) * (B.Y - A.Y))
/
((B.X - A.X) * (B.X - A.X) + (B.Y - A.Y) * (B.Y - A.Y));
return Math.Abs(s) * Math.Sqrt(((B.X - A.X) * (B.X - A.X) + (B.Y - A.Y) * (B.Y - A.Y)));
}
//From physics2d.net
public static Vertices ReduceByArea(Vertices vertices, float areaTolerance)
{
if (vertices.Count <= 3)
return vertices;
if (areaTolerance < 0)
{
throw new ArgumentOutOfRangeException("areaTolerance", "must be equal to or greater then zero.");
}
Vertices result = new Vertices();
Vector2 v1, v2, v3;
float old1, old2, new1;
v1 = vertices[vertices.Count - 2];
v2 = vertices[vertices.Count - 1];
areaTolerance *= 2;
for (int index = 0; index < vertices.Count; ++index, v2 = v3)
{
if (index == vertices.Count - 1)
{
if (result.Count == 0)
{
throw new ArgumentOutOfRangeException("areaTolerance", "The tolerance is too high!");
}
v3 = result[0];
}
else
{
v3 = vertices[index];
}
MathUtils.Cross(ref v1, ref v2, out old1);
MathUtils.Cross(ref v2, ref v3, out old2);
MathUtils.Cross(ref v1, ref v3, out new1);
if (Math.Abs(new1 - (old1 + old2)) > areaTolerance)
{
result.Add(v2);
v1 = v2;
}
}
return result;
}
//From Eric Jordan's convex decomposition library
/// <summary>
/// Merges all parallel edges in the list of vertices
/// </summary>
/// <param name="vertices">The vertices.</param>
/// <param name="tolerance">The tolerance.</param>
public static void MergeParallelEdges(Vertices vertices, float tolerance)
{
if (vertices.Count <= 3)
return; //Can't do anything useful here to a triangle
bool[] mergeMe = new bool[vertices.Count];
int newNVertices = vertices.Count;
//Gather points to process
for (int i = 0; i < vertices.Count; ++i)
{
int lower = (i == 0) ? (vertices.Count - 1) : (i - 1);
int middle = i;
int upper = (i == vertices.Count - 1) ? (0) : (i + 1);
float dx0 = vertices[middle].X - vertices[lower].X;
float dy0 = vertices[middle].Y - vertices[lower].Y;
float dx1 = vertices[upper].Y - vertices[middle].X;
float dy1 = vertices[upper].Y - vertices[middle].Y;
float norm0 = (float)Math.Sqrt(dx0 * dx0 + dy0 * dy0);
float norm1 = (float)Math.Sqrt(dx1 * dx1 + dy1 * dy1);
if (!(norm0 > 0.0f && norm1 > 0.0f) && newNVertices > 3)
{
//Merge identical points
mergeMe[i] = true;
--newNVertices;
}
dx0 /= norm0;
dy0 /= norm0;
dx1 /= norm1;
dy1 /= norm1;
float cross = dx0 * dy1 - dx1 * dy0;
float dot = dx0 * dx1 + dy0 * dy1;
if (Math.Abs(cross) < tolerance && dot > 0 && newNVertices > 3)
{
mergeMe[i] = true;
--newNVertices;
}
else
mergeMe[i] = false;
}
if (newNVertices == vertices.Count || newNVertices == 0)
return;
int currIndex = 0;
//Copy the vertices to a new list and clear the old
Vertices oldVertices = new Vertices(vertices);
vertices.Clear();
for (int i = 0; i < oldVertices.Count; ++i)
{
if (mergeMe[i] || newNVertices == 0 || currIndex == newNVertices)
continue;
Debug.Assert(currIndex < newNVertices);
vertices.Add(oldVertices[i]);
++currIndex;
}
}
//Misc
/// <summary>
/// Merges the identical points in the polygon.
/// </summary>
/// <param name="vertices">The vertices.</param>
/// <returns></returns>
public static Vertices MergeIdenticalPoints(Vertices vertices)
{
//We use a dictonary here because HashSet is not avaliable on all platforms.
HashSet<Vector2> results = new HashSet<Vector2>();
for (int i = 0; i < vertices.Count; i++)
{
results.Add(vertices[i]);
}
Vertices returnResults = new Vertices();
foreach (Vector2 v in results)
{
returnResults.Add(v);
}
return returnResults;
}
/// <summary>
/// Reduces the polygon by distance.
/// </summary>
/// <param name="vertices">The vertices.</param>
/// <param name="distance">The distance between points. Points closer than this will be 'joined'.</param>
/// <returns></returns>
public static Vertices ReduceByDistance(Vertices vertices, float distance)
{
//We can't simplify polygons under 3 vertices
if (vertices.Count < 3)
return vertices;
Vertices simplified = new Vertices();
for (int i = 0; i < vertices.Count; i++)
{
Vector2 current = vertices[i];
Vector2 next = vertices.NextVertex(i);
//If they are closer than the distance, continue
if ((next - current).LengthSquared() <= distance)
continue;
simplified.Add(current);
}
return simplified;
}
/// <summary>
/// Reduces the polygon by removing the Nth vertex in the vertices list.
/// </summary>
/// <param name="vertices">The vertices.</param>
/// <param name="nth">The Nth point to remove. Example: 5.</param>
/// <returns></returns>
public static Vertices ReduceByNth(Vertices vertices, int nth)
{
//We can't simplify polygons under 3 vertices
if (vertices.Count < 3)
return vertices;
if (nth == 0)
return vertices;
Vertices result = new Vertices(vertices.Count);
for (int i = 0; i < vertices.Count; i++)
{
if (i % nth == 0)
continue;
result.Add(vertices[i]);
}
return result;
}
}
}