axiosengine/axios/Dynamics/Joints/RopeJoint.cs

239 lines
7.7 KiB
C#

/*
* Copyright (c) 2006-2010 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
using System;
using System.Diagnostics;
using FarseerPhysics.Common;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Dynamics.Joints
{
// Limit:
// C = norm(pB - pA) - L
// u = (pB - pA) / norm(pB - pA)
// Cdot = dot(u, vB + cross(wB, rB) - vA - cross(wA, rA))
// J = [-u -cross(rA, u) u cross(rB, u)]
// K = J * invM * JT
// = invMassA + invIA * cross(rA, u)^2 + invMassB + invIB * cross(rB, u)^2
/// <summary>
/// A rope joint enforces a maximum distance between two points
/// on two bodies. It has no other effect.
/// Warning: if you attempt to change the maximum length during
/// the simulation you will get some non-physical behavior.
/// A model that would allow you to dynamically modify the length
/// would have some sponginess, so I chose not to implement it
/// that way. See b2DistanceJoint if you want to dynamically
/// control length.
/// </summary>
public class RopeJoint : Joint
{
public Vector2 LocalAnchorA;
public Vector2 LocalAnchorB;
private float _impulse;
private float _length;
private float _mass;
private Vector2 _rA, _rB;
private LimitState _state;
private Vector2 _u;
internal RopeJoint()
{
JointType = JointType.Rope;
}
public RopeJoint(Body bodyA, Body bodyB, Vector2 localAnchorA, Vector2 localAnchorB)
: base(bodyA, bodyB)
{
JointType = JointType.Rope;
LocalAnchorA = localAnchorA;
LocalAnchorB = localAnchorB;
Vector2 d = WorldAnchorB - WorldAnchorA;
MaxLength = d.Length();
_mass = 0.0f;
_impulse = 0.0f;
_state = LimitState.Inactive;
_length = 0.0f;
}
/// Get the maximum length of the rope.
public float MaxLength { get; set; }
public LimitState State
{
get { return _state; }
}
public override sealed Vector2 WorldAnchorA
{
get { return BodyA.GetWorldPoint(LocalAnchorA); }
}
public override sealed Vector2 WorldAnchorB
{
get { return BodyB.GetWorldPoint(LocalAnchorB); }
set { Debug.Assert(false, "You can't set the world anchor on this joint type."); }
}
public override Vector2 GetReactionForce(float invDt)
{
return (invDt * _impulse) * _u;
}
public override float GetReactionTorque(float invDt)
{
return 0;
}
internal override void InitVelocityConstraints(ref TimeStep step)
{
Body bA = BodyA;
Body bB = BodyB;
Transform xf1;
bA.GetTransform(out xf1);
Transform xf2;
bB.GetTransform(out xf2);
_rA = MathUtils.Multiply(ref xf1.R, LocalAnchorA - bA.LocalCenter);
_rB = MathUtils.Multiply(ref xf2.R, LocalAnchorB - bB.LocalCenter);
// Rope axis
_u = bB.Sweep.C + _rB - bA.Sweep.C - _rA;
_length = _u.Length();
float C = _length - MaxLength;
if (C > 0.0f)
{
_state = LimitState.AtUpper;
}
else
{
_state = LimitState.Inactive;
}
if (_length > Settings.LinearSlop)
{
_u *= 1.0f / _length;
}
else
{
_u = Vector2.Zero;
_mass = 0.0f;
_impulse = 0.0f;
return;
}
// Compute effective mass.
float crA = MathUtils.Cross(_rA, _u);
float crB = MathUtils.Cross(_rB, _u);
float invMass = bA.InvMass + bA.InvI * crA * crA + bB.InvMass + bB.InvI * crB * crB;
_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
if (Settings.EnableWarmstarting)
{
// Scale the impulse to support a variable time step.
_impulse *= step.dtRatio;
Vector2 P = _impulse * _u;
bA.LinearVelocity -= bA.InvMass * P;
bA.AngularVelocity -= bA.InvI * MathUtils.Cross(_rA, P);
bB.LinearVelocity += bB.InvMass * P;
bB.AngularVelocity += bB.InvI * MathUtils.Cross(_rB, P);
}
else
{
_impulse = 0.0f;
}
}
internal override void SolveVelocityConstraints(ref TimeStep step)
{
Body bA = BodyA;
Body bB = BodyB;
// Cdot = dot(u, v + cross(w, r))
Vector2 vA = bA.LinearVelocity + MathUtils.Cross(bA.AngularVelocity, _rA);
Vector2 vB = bB.LinearVelocity + MathUtils.Cross(bB.AngularVelocity, _rB);
float C = _length - MaxLength;
float Cdot = Vector2.Dot(_u, vB - vA);
// Predictive constraint.
if (C < 0.0f)
{
Cdot += step.inv_dt * C;
}
float impulse = -_mass * Cdot;
float oldImpulse = _impulse;
_impulse = Math.Min(0.0f, _impulse + impulse);
impulse = _impulse - oldImpulse;
Vector2 P = impulse * _u;
bA.LinearVelocity -= bA.InvMass * P;
bA.AngularVelocity -= bA.InvI * MathUtils.Cross(_rA, P);
bB.LinearVelocity += bB.InvMass * P;
bB.AngularVelocity += bB.InvI * MathUtils.Cross(_rB, P);
}
internal override bool SolvePositionConstraints()
{
Body bA = BodyA;
Body bB = BodyB;
Transform xf1;
bA.GetTransform(out xf1);
Transform xf2;
bB.GetTransform(out xf2);
Vector2 rA = MathUtils.Multiply(ref xf1.R, LocalAnchorA - bA.LocalCenter);
Vector2 rB = MathUtils.Multiply(ref xf2.R, LocalAnchorB - bB.LocalCenter);
Vector2 u = bB.Sweep.C + rB - bA.Sweep.C - rA;
float length = u.Length();
u.Normalize();
float C = length - MaxLength;
C = MathUtils.Clamp(C, 0.0f, Settings.MaxLinearCorrection);
float impulse = -_mass * C;
Vector2 P = impulse * u;
bA.Sweep.C -= bA.InvMass * P;
bA.Sweep.A -= bA.InvI * MathUtils.Cross(rA, P);
bB.Sweep.C += bB.InvMass * P;
bB.Sweep.A += bB.InvI * MathUtils.Cross(rB, P);
bA.SynchronizeTransform();
bB.SynchronizeTransform();
return length - MaxLength < Settings.LinearSlop;
}
}
}