/* * Farseer Physics Engine based on Box2D.XNA port: * Copyright (c) 2010 Ian Qvist * * Box2D.XNA port of Box2D: * Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler * * Original source Box2D: * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ using System; using System.Diagnostics; using FarseerPhysics.Common; using Microsoft.Xna.Framework; namespace FarseerPhysics.Dynamics.Joints { // Point-to-point constraint // C = p2 - p1 // Cdot = v2 - v1 // = v2 + cross(w2, r2) - v1 - cross(w1, r1) // J = [-I -r1_skew I r2_skew ] // Identity used: // w k % (rx i + ry j) = w * (-ry i + rx j) // Angle constraint // C = angle2 - angle1 - referenceAngle // Cdot = w2 - w1 // J = [0 0 -1 0 0 1] // K = invI1 + invI2 /// /// A weld joint essentially glues two bodies together. A weld joint may /// distort somewhat because the island constraint solver is approximate. /// public class WeldJoint : Joint { public Vector2 LocalAnchorA; public Vector2 LocalAnchorB; private Vector3 _impulse; private Mat33 _mass; internal WeldJoint() { JointType = JointType.Weld; } /// /// You need to specify a local anchor point /// where they are attached and the relative body angle. The position /// of the anchor point is important for computing the reaction torque. /// You can change the anchor points relative to bodyA or bodyB by changing LocalAnchorA /// and/or LocalAnchorB. /// /// The first body /// The second body /// The first body anchor. /// The second body anchor. public WeldJoint(Body bodyA, Body bodyB, Vector2 localAnchorA, Vector2 localAnchorB) : base(bodyA, bodyB) { JointType = JointType.Weld; LocalAnchorA = localAnchorA; LocalAnchorB = localAnchorB; ReferenceAngle = BodyB.Rotation - BodyA.Rotation; } public override Vector2 WorldAnchorA { get { return BodyA.GetWorldPoint(LocalAnchorA); } } public override Vector2 WorldAnchorB { get { return BodyB.GetWorldPoint(LocalAnchorB); } set { Debug.Assert(false, "You can't set the world anchor on this joint type."); } } /// /// The body2 angle minus body1 angle in the reference state (radians). /// public float ReferenceAngle { get; private set; } public override Vector2 GetReactionForce(float inv_dt) { return inv_dt * new Vector2(_impulse.X, _impulse.Y); } public override float GetReactionTorque(float inv_dt) { return inv_dt * _impulse.Z; } internal override void InitVelocityConstraints(ref TimeStep step) { Body bA = BodyA; Body bB = BodyB; Transform xfA, xfB; bA.GetTransform(out xfA); bB.GetTransform(out xfB); // Compute the effective mass matrix. Vector2 rA = MathUtils.Multiply(ref xfA.R, LocalAnchorA - bA.LocalCenter); Vector2 rB = MathUtils.Multiply(ref xfB.R, LocalAnchorB - bB.LocalCenter); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float mA = bA.InvMass, mB = bB.InvMass; float iA = bA.InvI, iB = bB.InvI; _mass.Col1.X = mA + mB + rA.Y * rA.Y * iA + rB.Y * rB.Y * iB; _mass.Col2.X = -rA.Y * rA.X * iA - rB.Y * rB.X * iB; _mass.Col3.X = -rA.Y * iA - rB.Y * iB; _mass.Col1.Y = _mass.Col2.X; _mass.Col2.Y = mA + mB + rA.X * rA.X * iA + rB.X * rB.X * iB; _mass.Col3.Y = rA.X * iA + rB.X * iB; _mass.Col1.Z = _mass.Col3.X; _mass.Col2.Z = _mass.Col3.Y; _mass.Col3.Z = iA + iB; if (Settings.EnableWarmstarting) { // Scale impulses to support a variable time step. _impulse *= step.dtRatio; Vector2 P = new Vector2(_impulse.X, _impulse.Y); bA.LinearVelocityInternal -= mA * P; bA.AngularVelocityInternal -= iA * (MathUtils.Cross(rA, P) + _impulse.Z); bB.LinearVelocityInternal += mB * P; bB.AngularVelocityInternal += iB * (MathUtils.Cross(rB, P) + _impulse.Z); } else { _impulse = Vector3.Zero; } } internal override void SolveVelocityConstraints(ref TimeStep step) { Body bA = BodyA; Body bB = BodyB; Vector2 vA = bA.LinearVelocityInternal; float wA = bA.AngularVelocityInternal; Vector2 vB = bB.LinearVelocityInternal; float wB = bB.AngularVelocityInternal; float mA = bA.InvMass, mB = bB.InvMass; float iA = bA.InvI, iB = bB.InvI; Transform xfA, xfB; bA.GetTransform(out xfA); bB.GetTransform(out xfB); Vector2 rA = MathUtils.Multiply(ref xfA.R, LocalAnchorA - bA.LocalCenter); Vector2 rB = MathUtils.Multiply(ref xfB.R, LocalAnchorB - bB.LocalCenter); // Solve point-to-point constraint Vector2 Cdot1 = vB + MathUtils.Cross(wB, rB) - vA - MathUtils.Cross(wA, rA); float Cdot2 = wB - wA; Vector3 Cdot = new Vector3(Cdot1.X, Cdot1.Y, Cdot2); Vector3 impulse = _mass.Solve33(-Cdot); _impulse += impulse; Vector2 P = new Vector2(impulse.X, impulse.Y); vA -= mA * P; wA -= iA * (MathUtils.Cross(rA, P) + impulse.Z); vB += mB * P; wB += iB * (MathUtils.Cross(rB, P) + impulse.Z); bA.LinearVelocityInternal = vA; bA.AngularVelocityInternal = wA; bB.LinearVelocityInternal = vB; bB.AngularVelocityInternal = wB; } internal override bool SolvePositionConstraints() { Body bA = BodyA; Body bB = BodyB; float mA = bA.InvMass, mB = bB.InvMass; float iA = bA.InvI, iB = bB.InvI; Transform xfA; Transform xfB; bA.GetTransform(out xfA); bB.GetTransform(out xfB); Vector2 rA = MathUtils.Multiply(ref xfA.R, LocalAnchorA - bA.LocalCenter); Vector2 rB = MathUtils.Multiply(ref xfB.R, LocalAnchorB - bB.LocalCenter); Vector2 C1 = bB.Sweep.C + rB - bA.Sweep.C - rA; float C2 = bB.Sweep.A - bA.Sweep.A - ReferenceAngle; // Handle large detachment. const float k_allowedStretch = 10.0f * Settings.LinearSlop; float positionError = C1.Length(); float angularError = Math.Abs(C2); if (positionError > k_allowedStretch) { iA *= 1.0f; iB *= 1.0f; } _mass.Col1.X = mA + mB + rA.Y * rA.Y * iA + rB.Y * rB.Y * iB; _mass.Col2.X = -rA.Y * rA.X * iA - rB.Y * rB.X * iB; _mass.Col3.X = -rA.Y * iA - rB.Y * iB; _mass.Col1.Y = _mass.Col2.X; _mass.Col2.Y = mA + mB + rA.X * rA.X * iA + rB.X * rB.X * iB; _mass.Col3.Y = rA.X * iA + rB.X * iB; _mass.Col1.Z = _mass.Col3.X; _mass.Col2.Z = _mass.Col3.Y; _mass.Col3.Z = iA + iB; Vector3 C = new Vector3(C1.X, C1.Y, C2); Vector3 impulse = _mass.Solve33(-C); Vector2 P = new Vector2(impulse.X, impulse.Y); bA.Sweep.C -= mA * P; bA.Sweep.A -= iA * (MathUtils.Cross(rA, P) + impulse.Z); bB.Sweep.C += mB * P; bB.Sweep.A += iB * (MathUtils.Cross(rB, P) + impulse.Z); bA.SynchronizeTransform(); bB.SynchronizeTransform(); return positionError <= Settings.LinearSlop && angularError <= Settings.AngularSlop; } } }