/* * Farseer Physics Engine based on Box2D.XNA port: * Copyright (c) 2010 Ian Qvist * * Box2D.XNA port of Box2D: * Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler * * Original source Box2D: * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ using System.Diagnostics; using FarseerPhysics.Common; using Microsoft.Xna.Framework; namespace FarseerPhysics.Dynamics.Joints { /// /// A mouse joint is used to make a point on a body track a /// specified world point. This a soft constraint with a maximum /// force. This allows the constraint to stretch and without /// applying huge forces. /// NOTE: this joint is not documented in the manual because it was /// developed to be used in the testbed. If you want to learn how to /// use the mouse joint, look at the testbed. /// public class FixedMouseJoint : Joint { public Vector2 LocalAnchorA; private Vector2 _C; // position error private float _beta; private float _gamma; private Vector2 _impulse; private Mat22 _mass; // effective mass for point-to-point constraint. private Vector2 _worldAnchor; /// /// This requires a world target point, /// tuning parameters, and the time step. /// /// The body. /// The target. public FixedMouseJoint(Body body, Vector2 worldAnchor) : base(body) { JointType = JointType.FixedMouse; Frequency = 5.0f; DampingRatio = 0.7f; Debug.Assert(worldAnchor.IsValid()); Transform xf1; BodyA.GetTransform(out xf1); _worldAnchor = worldAnchor; LocalAnchorA = BodyA.GetLocalPoint(worldAnchor); } public override Vector2 WorldAnchorA { get { return BodyA.GetWorldPoint(LocalAnchorA); } } public override Vector2 WorldAnchorB { get { return _worldAnchor; } set { BodyA.Awake = true; _worldAnchor = value; } } /// /// The maximum constraint force that can be exerted /// to move the candidate body. Usually you will express /// as some multiple of the weight (multiplier * mass * gravity). /// public float MaxForce { get; set; } /// /// The response speed. /// public float Frequency { get; set; } /// /// The damping ratio. 0 = no damping, 1 = critical damping. /// public float DampingRatio { get; set; } public override Vector2 GetReactionForce(float inv_dt) { return inv_dt * _impulse; } public override float GetReactionTorque(float inv_dt) { return inv_dt * 0.0f; } internal override void InitVelocityConstraints(ref TimeStep step) { Body b = BodyA; float mass = b.Mass; // Frequency float omega = 2.0f * Settings.Pi * Frequency; // Damping coefficient float d = 2.0f * mass * DampingRatio * omega; // Spring stiffness float k = mass * (omega * omega); // magic formulas // gamma has units of inverse mass. // beta has units of inverse time. Debug.Assert(d + step.dt * k > Settings.Epsilon); _gamma = step.dt * (d + step.dt * k); if (_gamma != 0.0f) { _gamma = 1.0f / _gamma; } _beta = step.dt * k * _gamma; // Compute the effective mass matrix. Transform xf1; b.GetTransform(out xf1); Vector2 r = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b.LocalCenter); // K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)] // = [1/m1+1/m2 0 ] + invI1 * [r1.Y*r1.Y -r1.X*r1.Y] + invI2 * [r1.Y*r1.Y -r1.X*r1.Y] // [ 0 1/m1+1/m2] [-r1.X*r1.Y r1.X*r1.X] [-r1.X*r1.Y r1.X*r1.X] float invMass = b.InvMass; float invI = b.InvI; Mat22 K1 = new Mat22(new Vector2(invMass, 0.0f), new Vector2(0.0f, invMass)); Mat22 K2 = new Mat22(new Vector2(invI * r.Y * r.Y, -invI * r.X * r.Y), new Vector2(-invI * r.X * r.Y, invI * r.X * r.X)); Mat22 K; Mat22.Add(ref K1, ref K2, out K); K.Col1.X += _gamma; K.Col2.Y += _gamma; _mass = K.Inverse; _C = b.Sweep.C + r - _worldAnchor; // Cheat with some damping b.AngularVelocityInternal *= 0.98f; // Warm starting. _impulse *= step.dtRatio; b.LinearVelocityInternal += invMass * _impulse; b.AngularVelocityInternal += invI * MathUtils.Cross(r, _impulse); } internal override void SolveVelocityConstraints(ref TimeStep step) { Body b = BodyA; Transform xf1; b.GetTransform(out xf1); Vector2 r = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b.LocalCenter); // Cdot = v + cross(w, r) Vector2 Cdot = b.LinearVelocityInternal + MathUtils.Cross(b.AngularVelocityInternal, r); Vector2 impulse = MathUtils.Multiply(ref _mass, -(Cdot + _beta * _C + _gamma * _impulse)); Vector2 oldImpulse = _impulse; _impulse += impulse; float maxImpulse = step.dt * MaxForce; if (_impulse.LengthSquared() > maxImpulse * maxImpulse) { _impulse *= maxImpulse / _impulse.Length(); } impulse = _impulse - oldImpulse; b.LinearVelocityInternal += b.InvMass * impulse; b.AngularVelocityInternal += b.InvI * MathUtils.Cross(r, impulse); } internal override bool SolvePositionConstraints() { return true; } } }