/* Poly2Tri * Copyright (c) 2009-2010, Poly2Tri Contributors * http://code.google.com/p/poly2tri/ * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of Poly2Tri nor the names of its contributors may be * used to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Sweep-line, Constrained Delauney Triangulation (CDT) See: Domiter, V. and * Zalik, B.(2008)'Sweep-line algorithm for constrained Delaunay triangulation', * International Journal of Geographical Information Science * * "FlipScan" Constrained Edge Algorithm invented by author of this code. * * Author: Thomas Åhlén, thahlen@gmail.com */ // Changes from the Java version // Turned DTSweep into a static class // Lots of deindentation via early bailout // Future possibilities // Comments! using System; using System.Collections.Generic; using System.Diagnostics; using FarseerPhysics.Common.Decomposition.CDT; namespace Poly2Tri.Triangulation.Delaunay.Sweep { public static class DTSweep { private const double PI_div2 = Math.PI/2; private const double PI_3div4 = 3*Math.PI/4; /// /// Triangulate simple polygon with holes /// public static void Triangulate(DTSweepContext tcx) { tcx.CreateAdvancingFront(); Sweep(tcx); // Finalize triangulation if (tcx.TriangulationMode == TriangulationMode.Polygon) { FinalizationPolygon(tcx); } else { FinalizationConvexHull(tcx); } tcx.Done(); } /// /// Start sweeping the Y-sorted point set from bottom to top /// private static void Sweep(DTSweepContext tcx) { List points = tcx.Points; TriangulationPoint point; AdvancingFrontNode node; for (int i = 1; i < points.Count; i++) { point = points[i]; node = PointEvent(tcx, point); if (point.HasEdges) { foreach (DTSweepConstraint e in point.Edges) { EdgeEvent(tcx, e, node); } } tcx.Update(null); } } /// /// If this is a Delaunay Triangulation of a pointset we need to fill so the triangle mesh gets a ConvexHull /// private static void FinalizationConvexHull(DTSweepContext tcx) { AdvancingFrontNode n1, n2; DelaunayTriangle t1, t2; TriangulationPoint first, p1; n1 = tcx.aFront.Head.Next; n2 = n1.Next; first = n1.Point; TurnAdvancingFrontConvex(tcx, n1, n2); // TODO: implement ConvexHull for lower right and left boundary // Lets remove triangles connected to the two "algorithm" points // XXX: When the first the nodes are points in a triangle we need to do a flip before // removing triangles or we will lose a valid triangle. // Same for last three nodes! // !!! If I implement ConvexHull for lower right and left boundary this fix should not be // needed and the removed triangles will be added again by default n1 = tcx.aFront.Tail.Prev; if (n1.Triangle.Contains(n1.Next.Point) && n1.Triangle.Contains(n1.Prev.Point)) { t1 = n1.Triangle.NeighborAcross(n1.Point); RotateTrianglePair(n1.Triangle, n1.Point, t1, t1.OppositePoint(n1.Triangle, n1.Point)); tcx.MapTriangleToNodes(n1.Triangle); tcx.MapTriangleToNodes(t1); } n1 = tcx.aFront.Head.Next; if (n1.Triangle.Contains(n1.Prev.Point) && n1.Triangle.Contains(n1.Next.Point)) { t1 = n1.Triangle.NeighborAcross(n1.Point); RotateTrianglePair(n1.Triangle, n1.Point, t1, t1.OppositePoint(n1.Triangle, n1.Point)); tcx.MapTriangleToNodes(n1.Triangle); tcx.MapTriangleToNodes(t1); } // Lower right boundary first = tcx.aFront.Head.Point; n2 = tcx.aFront.Tail.Prev; t1 = n2.Triangle; p1 = n2.Point; n2.Triangle = null; do { tcx.RemoveFromList(t1); p1 = t1.PointCCW(p1); if (p1 == first) break; t2 = t1.NeighborCCW(p1); t1.Clear(); t1 = t2; } while (true); // Lower left boundary first = tcx.aFront.Head.Next.Point; p1 = t1.PointCW(tcx.aFront.Head.Point); t2 = t1.NeighborCW(tcx.aFront.Head.Point); t1.Clear(); t1 = t2; while (p1 != first) //TODO: Port note. This was do while before. { tcx.RemoveFromList(t1); p1 = t1.PointCCW(p1); t2 = t1.NeighborCCW(p1); t1.Clear(); t1 = t2; } // Remove current head and tail node now that we have removed all triangles attached // to them. Then set new head and tail node points tcx.aFront.Head = tcx.aFront.Head.Next; tcx.aFront.Head.Prev = null; tcx.aFront.Tail = tcx.aFront.Tail.Prev; tcx.aFront.Tail.Next = null; tcx.FinalizeTriangulation(); } /// /// We will traverse the entire advancing front and fill it to form a convex hull. /// private static void TurnAdvancingFrontConvex(DTSweepContext tcx, AdvancingFrontNode b, AdvancingFrontNode c) { AdvancingFrontNode first = b; while (c != tcx.aFront.Tail) { if (TriangulationUtil.Orient2d(b.Point, c.Point, c.Next.Point) == Orientation.CCW) { // [b,c,d] Concave - fill around c Fill(tcx, c); c = c.Next; } else { // [b,c,d] Convex if (b != first && TriangulationUtil.Orient2d(b.Prev.Point, b.Point, c.Point) == Orientation.CCW) { // [a,b,c] Concave - fill around b Fill(tcx, b); b = b.Prev; } else { // [a,b,c] Convex - nothing to fill b = c; c = c.Next; } } } } private static void FinalizationPolygon(DTSweepContext tcx) { // Get an Internal triangle to start with DelaunayTriangle t = tcx.aFront.Head.Next.Triangle; TriangulationPoint p = tcx.aFront.Head.Next.Point; while (!t.GetConstrainedEdgeCW(p)) { t = t.NeighborCCW(p); } // Collect interior triangles constrained by edges tcx.MeshClean(t); } /// /// Find closes node to the left of the new point and /// create a new triangle. If needed new holes and basins /// will be filled to. /// private static AdvancingFrontNode PointEvent(DTSweepContext tcx, TriangulationPoint point) { AdvancingFrontNode node, newNode; node = tcx.LocateNode(point); newNode = NewFrontTriangle(tcx, point, node); // Only need to check +epsilon since point never have smaller // x value than node due to how we fetch nodes from the front if (point.X <= node.Point.X + TriangulationUtil.EPSILON) { Fill(tcx, node); } tcx.AddNode(newNode); FillAdvancingFront(tcx, newNode); return newNode; } /// /// Creates a new front triangle and legalize it /// private static AdvancingFrontNode NewFrontTriangle(DTSweepContext tcx, TriangulationPoint point, AdvancingFrontNode node) { AdvancingFrontNode newNode; DelaunayTriangle triangle; triangle = new DelaunayTriangle(point, node.Point, node.Next.Point); triangle.MarkNeighbor(node.Triangle); tcx.Triangles.Add(triangle); newNode = new AdvancingFrontNode(point); newNode.Next = node.Next; newNode.Prev = node; node.Next.Prev = newNode; node.Next = newNode; tcx.AddNode(newNode); // XXX: BST if (!Legalize(tcx, triangle)) { tcx.MapTriangleToNodes(triangle); } return newNode; } private static void EdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { try { tcx.EdgeEvent.ConstrainedEdge = edge; tcx.EdgeEvent.Right = edge.P.X > edge.Q.X; if (IsEdgeSideOfTriangle(node.Triangle, edge.P, edge.Q)) { return; } // For now we will do all needed filling // TODO: integrate with flip process might give some better performance // but for now this avoid the issue with cases that needs both flips and fills FillEdgeEvent(tcx, edge, node); EdgeEvent(tcx, edge.P, edge.Q, node.Triangle, edge.Q); } catch (PointOnEdgeException e) { Debug.WriteLine(String.Format("Skipping Edge: {0}", e.Message)); } } private static void FillEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { if (tcx.EdgeEvent.Right) { FillRightAboveEdgeEvent(tcx, edge, node); } else { FillLeftAboveEdgeEvent(tcx, edge, node); } } private static void FillRightConcaveEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { Fill(tcx, node.Next); if (node.Next.Point != edge.P) { // Next above or below edge? if (TriangulationUtil.Orient2d(edge.Q, node.Next.Point, edge.P) == Orientation.CCW) { // Below if (TriangulationUtil.Orient2d(node.Point, node.Next.Point, node.Next.Next.Point) == Orientation.CCW) { // Next is concave FillRightConcaveEdgeEvent(tcx, edge, node); } else { // Next is convex } } } } private static void FillRightConvexEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { // Next concave or convex? if (TriangulationUtil.Orient2d(node.Next.Point, node.Next.Next.Point, node.Next.Next.Next.Point) == Orientation.CCW) { // Concave FillRightConcaveEdgeEvent(tcx, edge, node.Next); } else { // Convex // Next above or below edge? if (TriangulationUtil.Orient2d(edge.Q, node.Next.Next.Point, edge.P) == Orientation.CCW) { // Below FillRightConvexEdgeEvent(tcx, edge, node.Next); } else { // Above } } } private static void FillRightBelowEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { if (node.Point.X < edge.P.X) // needed? { if (TriangulationUtil.Orient2d(node.Point, node.Next.Point, node.Next.Next.Point) == Orientation.CCW) { // Concave FillRightConcaveEdgeEvent(tcx, edge, node); } else { // Convex FillRightConvexEdgeEvent(tcx, edge, node); // Retry this one FillRightBelowEdgeEvent(tcx, edge, node); } } } private static void FillRightAboveEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { while (node.Next.Point.X < edge.P.X) { // Check if next node is below the edge Orientation o1 = TriangulationUtil.Orient2d(edge.Q, node.Next.Point, edge.P); if (o1 == Orientation.CCW) { FillRightBelowEdgeEvent(tcx, edge, node); } else { node = node.Next; } } } private static void FillLeftConvexEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { // Next concave or convex? if (TriangulationUtil.Orient2d(node.Prev.Point, node.Prev.Prev.Point, node.Prev.Prev.Prev.Point) == Orientation.CW) { // Concave FillLeftConcaveEdgeEvent(tcx, edge, node.Prev); } else { // Convex // Next above or below edge? if (TriangulationUtil.Orient2d(edge.Q, node.Prev.Prev.Point, edge.P) == Orientation.CW) { // Below FillLeftConvexEdgeEvent(tcx, edge, node.Prev); } else { // Above } } } private static void FillLeftConcaveEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { Fill(tcx, node.Prev); if (node.Prev.Point != edge.P) { // Next above or below edge? if (TriangulationUtil.Orient2d(edge.Q, node.Prev.Point, edge.P) == Orientation.CW) { // Below if (TriangulationUtil.Orient2d(node.Point, node.Prev.Point, node.Prev.Prev.Point) == Orientation.CW) { // Next is concave FillLeftConcaveEdgeEvent(tcx, edge, node); } else { // Next is convex } } } } private static void FillLeftBelowEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { if (node.Point.X > edge.P.X) { if (TriangulationUtil.Orient2d(node.Point, node.Prev.Point, node.Prev.Prev.Point) == Orientation.CW) { // Concave FillLeftConcaveEdgeEvent(tcx, edge, node); } else { // Convex FillLeftConvexEdgeEvent(tcx, edge, node); // Retry this one FillLeftBelowEdgeEvent(tcx, edge, node); } } } private static void FillLeftAboveEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node) { while (node.Prev.Point.X > edge.P.X) { // Check if next node is below the edge Orientation o1 = TriangulationUtil.Orient2d(edge.Q, node.Prev.Point, edge.P); if (o1 == Orientation.CW) { FillLeftBelowEdgeEvent(tcx, edge, node); } else { node = node.Prev; } } } //TODO: Port note: There were some structural differences here. private static bool IsEdgeSideOfTriangle(DelaunayTriangle triangle, TriangulationPoint ep, TriangulationPoint eq) { int index; index = triangle.EdgeIndex(ep, eq); if (index != -1) { triangle.MarkConstrainedEdge(index); triangle = triangle.Neighbors[index]; if (triangle != null) { triangle.MarkConstrainedEdge(ep, eq); } return true; } return false; } private static void EdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle triangle, TriangulationPoint point) { TriangulationPoint p1, p2; if (IsEdgeSideOfTriangle(triangle, ep, eq)) { return; } p1 = triangle.PointCCW(point); Orientation o1 = TriangulationUtil.Orient2d(eq, p1, ep); if (o1 == Orientation.Collinear) { if (triangle.Contains(eq, p1)) { triangle.MarkConstrainedEdge(eq, p1); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p1; triangle = triangle.NeighborAcross(point); EdgeEvent(tcx, ep, p1, triangle, p1); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet"); } if (tcx.IsDebugEnabled) { Debug.WriteLine("EdgeEvent - Point on constrained edge"); } return; } p2 = triangle.PointCW(point); Orientation o2 = TriangulationUtil.Orient2d(eq, p2, ep); if (o2 == Orientation.Collinear) { if (triangle.Contains(eq, p2)) { triangle.MarkConstrainedEdge(eq, p2); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p2; triangle = triangle.NeighborAcross(point); EdgeEvent(tcx, ep, p2, triangle, p2); } else { throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet"); } if (tcx.IsDebugEnabled) { Debug.WriteLine("EdgeEvent - Point on constrained edge"); } return; } if (o1 == o2) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if (o1 == Orientation.CW) { triangle = triangle.NeighborCCW(point); } else { triangle = triangle.NeighborCW(point); } EdgeEvent(tcx, ep, eq, triangle, point); } else { // This triangle crosses constraint so lets flippin start! FlipEdgeEvent(tcx, ep, eq, triangle, point); } } private static void FlipEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle t, TriangulationPoint p) { TriangulationPoint op, newP; DelaunayTriangle ot; bool inScanArea; ot = t.NeighborAcross(p); op = ot.OppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new InvalidOperationException("[BUG:FIXME] FLIP failed due to missing triangle"); } inScanArea = TriangulationUtil.InScanArea(p, t.PointCCW(p), t.PointCW(p), op); if (inScanArea) { // Lets rotate shared edge one vertex CW RotateTrianglePair(t, p, ot, op); tcx.MapTriangleToNodes(t); tcx.MapTriangleToNodes(ot); if (p == eq && op == ep) { if (eq == tcx.EdgeEvent.ConstrainedEdge.Q && ep == tcx.EdgeEvent.ConstrainedEdge.P) { if (tcx.IsDebugEnabled) Console.WriteLine("[FLIP] - constrained edge done"); // TODO: remove t.MarkConstrainedEdge(ep, eq); ot.MarkConstrainedEdge(ep, eq); Legalize(tcx, t); Legalize(tcx, ot); } else { if (tcx.IsDebugEnabled) Console.WriteLine("[FLIP] - subedge done"); // TODO: remove // XXX: I think one of the triangles should be legalized here? } } else { if (tcx.IsDebugEnabled) Console.WriteLine("[FLIP] - flipping and continuing with triangle still crossing edge"); // TODO: remove Orientation o = TriangulationUtil.Orient2d(eq, op, ep); t = NextFlipTriangle(tcx, o, t, ot, p, op); FlipEdgeEvent(tcx, ep, eq, t, p); } } else { newP = NextFlipPoint(ep, eq, ot, op); FlipScanEdgeEvent(tcx, ep, eq, t, ot, newP); EdgeEvent(tcx, ep, eq, t, p); } } /// /// When we need to traverse from one triangle to the next we need /// the point in current triangle that is the opposite point to the next /// triangle. /// private static TriangulationPoint NextFlipPoint(TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle ot, TriangulationPoint op) { Orientation o2d = TriangulationUtil.Orient2d(eq, op, ep); if (o2d == Orientation.CW) { // Right return ot.PointCCW(op); } else if (o2d == Orientation.CCW) { // Left return ot.PointCW(op); } else { // TODO: implement support for point on constraint edge throw new PointOnEdgeException("Point on constrained edge not supported yet"); } } /// /// After a flip we have two triangles and know that only one will still be /// intersecting the edge. So decide which to contiune with and legalize the other /// /// /// should be the result of an TriangulationUtil.orient2d( eq, op, ep ) /// triangle 1 /// triangle 2 /// a point shared by both triangles /// another point shared by both triangles /// returns the triangle still intersecting the edge private static DelaunayTriangle NextFlipTriangle(DTSweepContext tcx, Orientation o, DelaunayTriangle t, DelaunayTriangle ot, TriangulationPoint p, TriangulationPoint op) { int edgeIndex; if (o == Orientation.CCW) { // ot is not crossing edge after flip edgeIndex = ot.EdgeIndex(p, op); ot.EdgeIsDelaunay[edgeIndex] = true; Legalize(tcx, ot); ot.EdgeIsDelaunay.Clear(); return t; } // t is not crossing edge after flip edgeIndex = t.EdgeIndex(p, op); t.EdgeIsDelaunay[edgeIndex] = true; Legalize(tcx, t); t.EdgeIsDelaunay.Clear(); return ot; } /// /// Scan part of the FlipScan algorithm
/// When a triangle pair isn't flippable we will scan for the next /// point that is inside the flip triangle scan area. When found /// we generate a new flipEdgeEvent ///
/// /// last point on the edge we are traversing /// first point on the edge we are traversing /// the current triangle sharing the point eq with edge /// /// private static void FlipScanEdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq, DelaunayTriangle flipTriangle, DelaunayTriangle t, TriangulationPoint p) { DelaunayTriangle ot; TriangulationPoint op, newP; bool inScanArea; ot = t.NeighborAcross(p); op = ot.OppositePoint(t, p); if (ot == null) { // If we want to integrate the fillEdgeEvent do it here // With current implementation we should never get here throw new Exception("[BUG:FIXME] FLIP failed due to missing triangle"); } inScanArea = TriangulationUtil.InScanArea(eq, flipTriangle.PointCCW(eq), flipTriangle.PointCW(eq), op); if (inScanArea) { // flip with new edge op->eq FlipEdgeEvent(tcx, eq, op, ot, op); // TODO: Actually I just figured out that it should be possible to // improve this by getting the next ot and op before the the above // flip and continue the flipScanEdgeEvent here // set new ot and op here and loop back to inScanArea test // also need to set a new flipTriangle first // Turns out at first glance that this is somewhat complicated // so it will have to wait. } else { newP = NextFlipPoint(ep, eq, ot, op); FlipScanEdgeEvent(tcx, ep, eq, flipTriangle, ot, newP); } } /// /// Fills holes in the Advancing Front /// private static void FillAdvancingFront(DTSweepContext tcx, AdvancingFrontNode n) { AdvancingFrontNode node; double angle; // Fill right holes node = n.Next; while (node.HasNext) { angle = HoleAngle(node); if (angle > PI_div2 || angle < -PI_div2) { break; } Fill(tcx, node); node = node.Next; } // Fill left holes node = n.Prev; while (node.HasPrev) { angle = HoleAngle(node); if (angle > PI_div2 || angle < -PI_div2) { break; } Fill(tcx, node); node = node.Prev; } // Fill right basins if (n.HasNext && n.Next.HasNext) { angle = BasinAngle(n); if (angle < PI_3div4) { FillBasin(tcx, n); } } } /// /// Fills a basin that has formed on the Advancing Front to the right /// of given node.
/// First we decide a left,bottom and right node that forms the /// boundaries of the basin. Then we do a reqursive fill. ///
/// /// starting node, this or next node will be left node private static void FillBasin(DTSweepContext tcx, AdvancingFrontNode node) { if (TriangulationUtil.Orient2d(node.Point, node.Next.Point, node.Next.Next.Point) == Orientation.CCW) { // tcx.basin.leftNode = node.next.next; tcx.Basin.leftNode = node; } else { tcx.Basin.leftNode = node.Next; } // Find the bottom and right node tcx.Basin.bottomNode = tcx.Basin.leftNode; while (tcx.Basin.bottomNode.HasNext && tcx.Basin.bottomNode.Point.Y >= tcx.Basin.bottomNode.Next.Point.Y) { tcx.Basin.bottomNode = tcx.Basin.bottomNode.Next; } if (tcx.Basin.bottomNode == tcx.Basin.leftNode) { // No valid basins return; } tcx.Basin.rightNode = tcx.Basin.bottomNode; while (tcx.Basin.rightNode.HasNext && tcx.Basin.rightNode.Point.Y < tcx.Basin.rightNode.Next.Point.Y) { tcx.Basin.rightNode = tcx.Basin.rightNode.Next; } if (tcx.Basin.rightNode == tcx.Basin.bottomNode) { // No valid basins return; } tcx.Basin.width = tcx.Basin.rightNode.Point.X - tcx.Basin.leftNode.Point.X; tcx.Basin.leftHighest = tcx.Basin.leftNode.Point.Y > tcx.Basin.rightNode.Point.Y; FillBasinReq(tcx, tcx.Basin.bottomNode); } /// /// Recursive algorithm to fill a Basin with triangles /// private static void FillBasinReq(DTSweepContext tcx, AdvancingFrontNode node) { // if shallow stop filling if (IsShallow(tcx, node)) { return; } Fill(tcx, node); if (node.Prev == tcx.Basin.leftNode && node.Next == tcx.Basin.rightNode) { return; } else if (node.Prev == tcx.Basin.leftNode) { Orientation o = TriangulationUtil.Orient2d(node.Point, node.Next.Point, node.Next.Next.Point); if (o == Orientation.CW) { return; } node = node.Next; } else if (node.Next == tcx.Basin.rightNode) { Orientation o = TriangulationUtil.Orient2d(node.Point, node.Prev.Point, node.Prev.Prev.Point); if (o == Orientation.CCW) { return; } node = node.Prev; } else { // Continue with the neighbor node with lowest Y value if (node.Prev.Point.Y < node.Next.Point.Y) { node = node.Prev; } else { node = node.Next; } } FillBasinReq(tcx, node); } private static bool IsShallow(DTSweepContext tcx, AdvancingFrontNode node) { double height; if (tcx.Basin.leftHighest) { height = tcx.Basin.leftNode.Point.Y - node.Point.Y; } else { height = tcx.Basin.rightNode.Point.Y - node.Point.Y; } if (tcx.Basin.width > height) { return true; } return false; } /// /// ??? /// /// middle node /// the angle between 3 front nodes private static double HoleAngle(AdvancingFrontNode node) { // XXX: do we really need a signed angle for holeAngle? // could possible save some cycles here /* Complex plane * ab = cosA +i*sinA * ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx) * atan2(y,x) computes the principal value of the argument function * applied to the complex number x+iy * Where x = ax*bx + ay*by * y = ax*by - ay*bx */ double px = node.Point.X; double py = node.Point.Y; double ax = node.Next.Point.X - px; double ay = node.Next.Point.Y - py; double bx = node.Prev.Point.X - px; double by = node.Prev.Point.Y - py; return Math.Atan2(ax*by - ay*bx, ax*bx + ay*by); } /// /// The basin angle is decided against the horizontal line [1,0] /// private static double BasinAngle(AdvancingFrontNode node) { double ax = node.Point.X - node.Next.Next.Point.X; double ay = node.Point.Y - node.Next.Next.Point.Y; return Math.Atan2(ay, ax); } /// /// Adds a triangle to the advancing front to fill a hole. /// /// /// middle node, that is the bottom of the hole private static void Fill(DTSweepContext tcx, AdvancingFrontNode node) { DelaunayTriangle triangle = new DelaunayTriangle(node.Prev.Point, node.Point, node.Next.Point); // TODO: should copy the cEdge value from neighbor triangles // for now cEdge values are copied during the legalize triangle.MarkNeighbor(node.Prev.Triangle); triangle.MarkNeighbor(node.Triangle); tcx.Triangles.Add(triangle); // Update the advancing front node.Prev.Next = node.Next; node.Next.Prev = node.Prev; tcx.RemoveNode(node); // If it was legalized the triangle has already been mapped if (!Legalize(tcx, triangle)) { tcx.MapTriangleToNodes(triangle); } } /// /// Returns true if triangle was legalized /// private static bool Legalize(DTSweepContext tcx, DelaunayTriangle t) { int oi; bool inside; TriangulationPoint p, op; DelaunayTriangle ot; // To legalize a triangle we start by finding if any of the three edges // violate the Delaunay condition for (int i = 0; i < 3; i++) { // TODO: fix so that cEdge is always valid when creating new triangles then we can check it here // instead of below with ot if (t.EdgeIsDelaunay[i]) { continue; } ot = t.Neighbors[i]; if (ot != null) { p = t.Points[i]; op = ot.OppositePoint(t, p); oi = ot.IndexOf(op); // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization) // then we should not try to legalize if (ot.EdgeIsConstrained[oi] || ot.EdgeIsDelaunay[oi]) { t.EdgeIsConstrained[i] = ot.EdgeIsConstrained[oi]; // XXX: have no good way of setting this property when creating new triangles so lets set it here continue; } inside = TriangulationUtil.SmartIncircle(p, t.PointCCW(p), t.PointCW(p), op); if (inside) { bool notLegalized; // Lets mark this shared edge as Delaunay t.EdgeIsDelaunay[i] = true; ot.EdgeIsDelaunay[oi] = true; // Lets rotate shared edge one vertex CW to legalize it RotateTrianglePair(t, p, ot, op); // We now got one valid Delaunay Edge shared by two triangles // This gives us 4 new edges to check for Delaunay // Make sure that triangle to node mapping is done only one time for a specific triangle notLegalized = !Legalize(tcx, t); if (notLegalized) { tcx.MapTriangleToNodes(t); } notLegalized = !Legalize(tcx, ot); if (notLegalized) { tcx.MapTriangleToNodes(ot); } // Reset the Delaunay edges, since they only are valid Delaunay edges // until we add a new triangle or point. // XXX: need to think about this. Can these edges be tried after we // return to previous recursive level? t.EdgeIsDelaunay[i] = false; ot.EdgeIsDelaunay[oi] = false; // If triangle have been legalized no need to check the other edges since // the recursive legalization will handles those so we can end here. return true; } } } return false; } /// /// Rotates a triangle pair one vertex CW /// n2 n2 /// P +-----+ P +-----+ /// | t /| |\ t | /// | / | | \ | /// n1| / |n3 n1| \ |n3 /// | / | after CW | \ | /// |/ oT | | oT \| /// +-----+ oP +-----+ /// n4 n4 /// private static void RotateTrianglePair(DelaunayTriangle t, TriangulationPoint p, DelaunayTriangle ot, TriangulationPoint op) { DelaunayTriangle n1, n2, n3, n4; n1 = t.NeighborCCW(p); n2 = t.NeighborCW(p); n3 = ot.NeighborCCW(op); n4 = ot.NeighborCW(op); bool ce1, ce2, ce3, ce4; ce1 = t.GetConstrainedEdgeCCW(p); ce2 = t.GetConstrainedEdgeCW(p); ce3 = ot.GetConstrainedEdgeCCW(op); ce4 = ot.GetConstrainedEdgeCW(op); bool de1, de2, de3, de4; de1 = t.GetDelaunayEdgeCCW(p); de2 = t.GetDelaunayEdgeCW(p); de3 = ot.GetDelaunayEdgeCCW(op); de4 = ot.GetDelaunayEdgeCW(op); t.Legalize(p, op); ot.Legalize(op, p); // Remap dEdge ot.SetDelaunayEdgeCCW(p, de1); t.SetDelaunayEdgeCW(p, de2); t.SetDelaunayEdgeCCW(op, de3); ot.SetDelaunayEdgeCW(op, de4); // Remap cEdge ot.SetConstrainedEdgeCCW(p, ce1); t.SetConstrainedEdgeCW(p, ce2); t.SetConstrainedEdgeCCW(op, ce3); ot.SetConstrainedEdgeCW(op, ce4); // Remap neighbors // XXX: might optimize the markNeighbor by keeping track of // what side should be assigned to what neighbor after the // rotation. Now mark neighbor does lots of testing to find // the right side. t.Neighbors.Clear(); ot.Neighbors.Clear(); if (n1 != null) ot.MarkNeighbor(n1); if (n2 != null) t.MarkNeighbor(n2); if (n3 != null) t.MarkNeighbor(n3); if (n4 != null) ot.MarkNeighbor(n4); t.MarkNeighbor(ot); } } }