/*
* Farseer Physics Engine based on Box2D.XNA port:
* Copyright (c) 2010 Ian Qvist
*
* Box2D.XNA port of Box2D:
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
*
* Original source Box2D:
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
using System.Diagnostics;
using FarseerPhysics.Common;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Dynamics.Joints
{
///
/// A gear joint is used to connect two joints together. Either joint
/// can be a revolute or prismatic joint. You specify a gear ratio
/// to bind the motions together:
/// coordinate1 + ratio * coordinate2 = ant
/// The ratio can be negative or positive. If one joint is a revolute joint
/// and the other joint is a prismatic joint, then the ratio will have units
/// of length or units of 1/length.
/// @warning The revolute and prismatic joints must be attached to
/// fixed bodies (which must be body1 on those joints).
///
public class GearJoint : Joint
{
private Jacobian _J;
private float _ant;
private FixedPrismaticJoint _fixedPrismatic1;
private FixedPrismaticJoint _fixedPrismatic2;
private FixedRevoluteJoint _fixedRevolute1;
private FixedRevoluteJoint _fixedRevolute2;
private float _impulse;
private float _mass;
private PrismaticJoint _prismatic1;
private PrismaticJoint _prismatic2;
private RevoluteJoint _revolute1;
private RevoluteJoint _revolute2;
///
/// Requires two existing revolute or prismatic joints (any combination will work).
/// The provided joints must attach a dynamic body to a static body.
///
/// The first joint.
/// The second joint.
/// The ratio.
public GearJoint(Joint jointA, Joint jointB, float ratio)
: base(jointA.BodyA, jointA.BodyB)
{
JointType = JointType.Gear;
JointA = jointA;
JointB = jointB;
Ratio = ratio;
JointType type1 = jointA.JointType;
JointType type2 = jointB.JointType;
// Make sure its the right kind of joint
Debug.Assert(type1 == JointType.Revolute ||
type1 == JointType.Prismatic ||
type1 == JointType.FixedRevolute ||
type1 == JointType.FixedPrismatic);
Debug.Assert(type2 == JointType.Revolute ||
type2 == JointType.Prismatic ||
type2 == JointType.FixedRevolute ||
type2 == JointType.FixedPrismatic);
// In the case of a prismatic and revolute joint, the first body must be static.
if (type1 == JointType.Revolute || type1 == JointType.Prismatic)
Debug.Assert(jointA.BodyA.BodyType == BodyType.Static);
if (type2 == JointType.Revolute || type2 == JointType.Prismatic)
Debug.Assert(jointB.BodyA.BodyType == BodyType.Static);
float coordinate1 = 0.0f, coordinate2 = 0.0f;
switch (type1)
{
case JointType.Revolute:
BodyA = jointA.BodyB;
_revolute1 = (RevoluteJoint)jointA;
LocalAnchor1 = _revolute1.LocalAnchorB;
coordinate1 = _revolute1.JointAngle;
break;
case JointType.Prismatic:
BodyA = jointA.BodyB;
_prismatic1 = (PrismaticJoint)jointA;
LocalAnchor1 = _prismatic1.LocalAnchorB;
coordinate1 = _prismatic1.JointTranslation;
break;
case JointType.FixedRevolute:
BodyA = jointA.BodyA;
_fixedRevolute1 = (FixedRevoluteJoint)jointA;
LocalAnchor1 = _fixedRevolute1.LocalAnchorA;
coordinate1 = _fixedRevolute1.JointAngle;
break;
case JointType.FixedPrismatic:
BodyA = jointA.BodyA;
_fixedPrismatic1 = (FixedPrismaticJoint)jointA;
LocalAnchor1 = _fixedPrismatic1.LocalAnchorA;
coordinate1 = _fixedPrismatic1.JointTranslation;
break;
}
switch (type2)
{
case JointType.Revolute:
BodyB = jointB.BodyB;
_revolute2 = (RevoluteJoint)jointB;
LocalAnchor2 = _revolute2.LocalAnchorB;
coordinate2 = _revolute2.JointAngle;
break;
case JointType.Prismatic:
BodyB = jointB.BodyB;
_prismatic2 = (PrismaticJoint)jointB;
LocalAnchor2 = _prismatic2.LocalAnchorB;
coordinate2 = _prismatic2.JointTranslation;
break;
case JointType.FixedRevolute:
BodyB = jointB.BodyA;
_fixedRevolute2 = (FixedRevoluteJoint)jointB;
LocalAnchor2 = _fixedRevolute2.LocalAnchorA;
coordinate2 = _fixedRevolute2.JointAngle;
break;
case JointType.FixedPrismatic:
BodyB = jointB.BodyA;
_fixedPrismatic2 = (FixedPrismaticJoint)jointB;
LocalAnchor2 = _fixedPrismatic2.LocalAnchorA;
coordinate2 = _fixedPrismatic2.JointTranslation;
break;
}
_ant = coordinate1 + Ratio * coordinate2;
}
public override Vector2 WorldAnchorA
{
get { return BodyA.GetWorldPoint(LocalAnchor1); }
}
public override Vector2 WorldAnchorB
{
get { return BodyB.GetWorldPoint(LocalAnchor2); }
set { Debug.Assert(false, "You can't set the world anchor on this joint type."); }
}
///
/// The gear ratio.
///
public float Ratio { get; set; }
///
/// The first revolute/prismatic joint attached to the gear joint.
///
public Joint JointA { get; set; }
///
/// The second revolute/prismatic joint attached to the gear joint.
///
public Joint JointB { get; set; }
public Vector2 LocalAnchor1 { get; private set; }
public Vector2 LocalAnchor2 { get; private set; }
public override Vector2 GetReactionForce(float inv_dt)
{
Vector2 P = _impulse * _J.LinearB;
return inv_dt * P;
}
public override float GetReactionTorque(float inv_dt)
{
Transform xf1;
BodyB.GetTransform(out xf1);
Vector2 r = MathUtils.Multiply(ref xf1.R, LocalAnchor2 - BodyB.LocalCenter);
Vector2 P = _impulse * _J.LinearB;
float L = _impulse * _J.AngularB - MathUtils.Cross(r, P);
return inv_dt * L;
}
internal override void InitVelocityConstraints(ref TimeStep step)
{
Body b1 = BodyA;
Body b2 = BodyB;
float K = 0.0f;
_J.SetZero();
if (_revolute1 != null || _fixedRevolute1 != null)
{
_J.AngularA = -1.0f;
K += b1.InvI;
}
else
{
Vector2 ug;
if (_prismatic1 != null)
ug = _prismatic1.LocalXAxis1; // MathUtils.Multiply(ref xfg1.R, _prismatic1.LocalXAxis1);
else
ug = _fixedPrismatic1.LocalXAxis1; // MathUtils.Multiply(ref xfg1.R, _prismatic1.LocalXAxis1);
Transform xf1 /*, xfg1*/;
b1.GetTransform(out xf1);
//g1.GetTransform(out xfg1);
Vector2 r = MathUtils.Multiply(ref xf1.R, LocalAnchor1 - b1.LocalCenter);
float crug = MathUtils.Cross(r, ug);
_J.LinearA = -ug;
_J.AngularA = -crug;
K += b1.InvMass + b1.InvI * crug * crug;
}
if (_revolute2 != null || _fixedRevolute2 != null)
{
_J.AngularB = -Ratio;
K += Ratio * Ratio * b2.InvI;
}
else
{
Vector2 ug;
if (_prismatic2 != null)
ug = _prismatic2.LocalXAxis1; // MathUtils.Multiply(ref xfg1.R, _prismatic1.LocalXAxis1);
else
ug = _fixedPrismatic2.LocalXAxis1; // MathUtils.Multiply(ref xfg1.R, _prismatic1.LocalXAxis1);
Transform /*xfg1,*/ xf2;
//g1.GetTransform(out xfg1);
b2.GetTransform(out xf2);
Vector2 r = MathUtils.Multiply(ref xf2.R, LocalAnchor2 - b2.LocalCenter);
float crug = MathUtils.Cross(r, ug);
_J.LinearB = -Ratio * ug;
_J.AngularB = -Ratio * crug;
K += Ratio * Ratio * (b2.InvMass + b2.InvI * crug * crug);
}
// Compute effective mass.
Debug.Assert(K > 0.0f);
_mass = K > 0.0f ? 1.0f / K : 0.0f;
if (Settings.EnableWarmstarting)
{
// Warm starting.
b1.LinearVelocityInternal += b1.InvMass * _impulse * _J.LinearA;
b1.AngularVelocityInternal += b1.InvI * _impulse * _J.AngularA;
b2.LinearVelocityInternal += b2.InvMass * _impulse * _J.LinearB;
b2.AngularVelocityInternal += b2.InvI * _impulse * _J.AngularB;
}
else
{
_impulse = 0.0f;
}
}
internal override void SolveVelocityConstraints(ref TimeStep step)
{
Body b1 = BodyA;
Body b2 = BodyB;
float Cdot = _J.Compute(b1.LinearVelocityInternal, b1.AngularVelocityInternal,
b2.LinearVelocityInternal, b2.AngularVelocityInternal);
float impulse = _mass * (-Cdot);
_impulse += impulse;
b1.LinearVelocityInternal += b1.InvMass * impulse * _J.LinearA;
b1.AngularVelocityInternal += b1.InvI * impulse * _J.AngularA;
b2.LinearVelocityInternal += b2.InvMass * impulse * _J.LinearB;
b2.AngularVelocityInternal += b2.InvI * impulse * _J.AngularB;
}
internal override bool SolvePositionConstraints()
{
const float linearError = 0.0f;
Body b1 = BodyA;
Body b2 = BodyB;
float coordinate1 = 0.0f, coordinate2 = 0.0f;
if (_revolute1 != null)
{
coordinate1 = _revolute1.JointAngle;
}
else if (_fixedRevolute1 != null)
{
coordinate1 = _fixedRevolute1.JointAngle;
}
else if (_prismatic1 != null)
{
coordinate1 = _prismatic1.JointTranslation;
}
else if (_fixedPrismatic1 != null)
{
coordinate1 = _fixedPrismatic1.JointTranslation;
}
if (_revolute2 != null)
{
coordinate2 = _revolute2.JointAngle;
}
else if (_fixedRevolute2 != null)
{
coordinate2 = _fixedRevolute2.JointAngle;
}
else if (_prismatic2 != null)
{
coordinate2 = _prismatic2.JointTranslation;
}
else if (_fixedPrismatic2 != null)
{
coordinate2 = _fixedPrismatic2.JointTranslation;
}
float C = _ant - (coordinate1 + Ratio * coordinate2);
float impulse = _mass * (-C);
b1.Sweep.C += b1.InvMass * impulse * _J.LinearA;
b1.Sweep.A += b1.InvI * impulse * _J.AngularA;
b2.Sweep.C += b2.InvMass * impulse * _J.LinearB;
b2.Sweep.A += b2.InvI * impulse * _J.AngularB;
b1.SynchronizeTransform();
b2.SynchronizeTransform();
// TODO_ERIN not implemented
return linearError < Settings.LinearSlop;
}
}
}