/*
* C# Version Ported by Matt Bettcher and Ian Qvist 2009-2010
*
* Original C++ Version Copyright (c) 2007 Eric Jordan
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
using System;
using System.Collections.Generic;
using FarseerPhysics.Common.PolygonManipulation;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Common.Decomposition
{
///
/// Ported from jBox2D. Original author: ewjordan
/// Triangulates a polygon using simple ear-clipping algorithm.
///
/// Only works on simple polygons.
///
/// Triangles may be degenerate, especially if you have identical points
/// in the input to the algorithm. Check this before you use them.
///
public static class EarclipDecomposer
{
//box2D rev 32 - for details, see http://www.box2d.org/forum/viewtopic.php?f=4&t=83&start=50
private const float Tol = .001f;
///
/// Decomposes a non-convex polygon into a number of convex polygons, up
/// to maxPolys (remaining pieces are thrown out).
///
/// Each resulting polygon will have no more than Settings.MaxPolygonVertices
/// vertices.
///
/// Warning: Only works on simple polygons
///
/// The vertices.
///
public static List ConvexPartition(Vertices vertices)
{
return ConvexPartition(vertices, int.MaxValue, 0);
}
///
/// Decomposes a non-convex polygon into a number of convex polygons, up
/// to maxPolys (remaining pieces are thrown out).
/// Each resulting polygon will have no more than Settings.MaxPolygonVertices
/// vertices.
/// Warning: Only works on simple polygons
///
/// The vertices.
/// The maximum number of polygons.
/// The tolerance.
///
public static List ConvexPartition(Vertices vertices, int maxPolys, float tolerance)
{
if (vertices.Count < 3)
return new List { vertices };
/*
if (vertices.IsConvex() && vertices.Count <= Settings.MaxPolygonVertices)
{
if (vertices.IsCounterClockWise())
{
Vertices tempP = new Vertices(vertices);
tempP.Reverse();
tempP = SimplifyTools.CollinearSimplify(tempP);
tempP.ForceCounterClockWise();
return new List { tempP };
}
vertices = SimplifyTools.CollinearSimplify(vertices);
vertices.ForceCounterClockWise();
return new List { vertices };
}
*/
List triangulated;
if (vertices.IsCounterClockWise())
{
Vertices tempP = new Vertices(vertices);
tempP.Reverse();
triangulated = TriangulatePolygon(tempP);
}
else
{
triangulated = TriangulatePolygon(vertices);
}
if (triangulated.Count < 1)
{
//Still no luck? Oh well...
throw new Exception("Can't triangulate your polygon.");
}
List polygonizedTriangles = PolygonizeTriangles(triangulated, maxPolys, tolerance);
//The polygonized triangles are not guaranteed to be without collinear points. We remove
//them to be sure.
for (int i = 0; i < polygonizedTriangles.Count; i++)
{
polygonizedTriangles[i] = SimplifyTools.CollinearSimplify(polygonizedTriangles[i], 0);
}
//Remove empty vertice collections
for (int i = polygonizedTriangles.Count - 1; i >= 0; i--)
{
if (polygonizedTriangles[i].Count == 0)
polygonizedTriangles.RemoveAt(i);
}
return polygonizedTriangles;
}
///
/// Turns a list of triangles into a list of convex polygons. Very simple
/// method - start with a seed triangle, keep adding triangles to it until
/// you can't add any more without making the polygon non-convex.
///
/// Returns an integer telling how many polygons were created. Will fill
/// polys array up to polysLength entries, which may be smaller or larger
/// than the return value.
///
/// Takes O(N///P) where P is the number of resultant polygons, N is triangle
/// count.
///
/// The final polygon list will not necessarily be minimal, though in
/// practice it works fairly well.
///
/// The triangulated.
///The maximun number of polygons
///The tolerance
///
public static List PolygonizeTriangles(List triangulated, int maxPolys, float tolerance)
{
List polys = new List(50);
int polyIndex = 0;
if (triangulated.Count <= 0)
{
//return empty polygon list
return polys;
}
bool[] covered = new bool[triangulated.Count];
for (int i = 0; i < triangulated.Count; ++i)
{
covered[i] = false;
//Check here for degenerate triangles
if (((triangulated[i].X[0] == triangulated[i].X[1]) && (triangulated[i].Y[0] == triangulated[i].Y[1]))
||
((triangulated[i].X[1] == triangulated[i].X[2]) && (triangulated[i].Y[1] == triangulated[i].Y[2]))
||
((triangulated[i].X[0] == triangulated[i].X[2]) && (triangulated[i].Y[0] == triangulated[i].Y[2])))
{
covered[i] = true;
}
}
bool notDone = true;
while (notDone)
{
int currTri = -1;
for (int i = 0; i < triangulated.Count; ++i)
{
if (covered[i])
continue;
currTri = i;
break;
}
if (currTri == -1)
{
notDone = false;
}
else
{
Vertices poly = new Vertices(3);
for (int i = 0; i < 3; i++)
{
poly.Add(new Vector2(triangulated[currTri].X[i], triangulated[currTri].Y[i]));
}
covered[currTri] = true;
int index = 0;
for (int i = 0; i < 2 * triangulated.Count; ++i, ++index)
{
while (index >= triangulated.Count) index -= triangulated.Count;
if (covered[index])
{
continue;
}
Vertices newP = AddTriangle(triangulated[index], poly);
if (newP == null)
continue; // is this right
if (newP.Count > Settings.MaxPolygonVertices)
continue;
if (newP.IsConvex())
{
//Or should it be IsUsable? Maybe re-write IsConvex to apply the angle threshold from Box2d
poly = new Vertices(newP);
covered[index] = true;
}
}
//We have a maximum of polygons that we need to keep under.
if (polyIndex < maxPolys)
{
//SimplifyTools.MergeParallelEdges(poly, tolerance);
//If identical points are present, a triangle gets
//borked by the MergeParallelEdges function, hence
//the vertex number check
if (poly.Count >= 3)
polys.Add(new Vertices(poly));
//else
// printf("Skipping corrupt poly\n");
}
if (poly.Count >= 3)
polyIndex++; //Must be outside (polyIndex < polysLength) test
}
}
return polys;
}
///
/// Triangulates a polygon using simple ear-clipping algorithm. Returns
/// size of Triangle array unless the polygon can't be triangulated.
/// This should only happen if the polygon self-intersects,
/// though it will not _always_ return null for a bad polygon - it is the
/// caller's responsibility to check for self-intersection, and if it
/// doesn't, it should at least check that the return value is non-null
/// before using. You're warned!
///
/// Triangles may be degenerate, especially if you have identical points
/// in the input to the algorithm. Check this before you use them.
///
/// This is totally unoptimized, so for large polygons it should not be part
/// of the simulation loop.
///
/// Warning: Only works on simple polygons.
///
///
public static List TriangulatePolygon(Vertices vertices)
{
List results = new List();
if (vertices.Count < 3)
return new List();
//Recurse and split on pinch points
Vertices pA, pB;
Vertices pin = new Vertices(vertices);
if (ResolvePinchPoint(pin, out pA, out pB))
{
List mergeA = TriangulatePolygon(pA);
List mergeB = TriangulatePolygon(pB);
if (mergeA.Count == -1 || mergeB.Count == -1)
throw new Exception("Can't triangulate your polygon.");
for (int i = 0; i < mergeA.Count; ++i)
{
results.Add(new Triangle(mergeA[i]));
}
for (int i = 0; i < mergeB.Count; ++i)
{
results.Add(new Triangle(mergeB[i]));
}
return results;
}
Triangle[] buffer = new Triangle[vertices.Count - 2];
int bufferSize = 0;
float[] xrem = new float[vertices.Count];
float[] yrem = new float[vertices.Count];
for (int i = 0; i < vertices.Count; ++i)
{
xrem[i] = vertices[i].X;
yrem[i] = vertices[i].Y;
}
int vNum = vertices.Count;
while (vNum > 3)
{
// Find an ear
int earIndex = -1;
float earMaxMinCross = -10.0f;
for (int i = 0; i < vNum; ++i)
{
if (IsEar(i, xrem, yrem, vNum))
{
int lower = Remainder(i - 1, vNum);
int upper = Remainder(i + 1, vNum);
Vector2 d1 = new Vector2(xrem[upper] - xrem[i], yrem[upper] - yrem[i]);
Vector2 d2 = new Vector2(xrem[i] - xrem[lower], yrem[i] - yrem[lower]);
Vector2 d3 = new Vector2(xrem[lower] - xrem[upper], yrem[lower] - yrem[upper]);
d1.Normalize();
d2.Normalize();
d3.Normalize();
float cross12;
MathUtils.Cross(ref d1, ref d2, out cross12);
cross12 = Math.Abs(cross12);
float cross23;
MathUtils.Cross(ref d2, ref d3, out cross23);
cross23 = Math.Abs(cross23);
float cross31;
MathUtils.Cross(ref d3, ref d1, out cross31);
cross31 = Math.Abs(cross31);
//Find the maximum minimum angle
float minCross = Math.Min(cross12, Math.Min(cross23, cross31));
if (minCross > earMaxMinCross)
{
earIndex = i;
earMaxMinCross = minCross;
}
}
}
// If we still haven't found an ear, we're screwed.
// Note: sometimes this is happening because the
// remaining points are collinear. Really these
// should just be thrown out without halting triangulation.
if (earIndex == -1)
{
for (int i = 0; i < bufferSize; i++)
{
results.Add(new Triangle(buffer[i]));
}
return results;
}
// Clip off the ear:
// - remove the ear tip from the list
--vNum;
float[] newx = new float[vNum];
float[] newy = new float[vNum];
int currDest = 0;
for (int i = 0; i < vNum; ++i)
{
if (currDest == earIndex) ++currDest;
newx[i] = xrem[currDest];
newy[i] = yrem[currDest];
++currDest;
}
// - add the clipped triangle to the triangle list
int under = (earIndex == 0) ? (vNum) : (earIndex - 1);
int over = (earIndex == vNum) ? 0 : (earIndex + 1);
Triangle toAdd = new Triangle(xrem[earIndex], yrem[earIndex], xrem[over], yrem[over], xrem[under],
yrem[under]);
buffer[bufferSize] = toAdd;
++bufferSize;
// - replace the old list with the new one
xrem = newx;
yrem = newy;
}
Triangle tooAdd = new Triangle(xrem[1], yrem[1], xrem[2], yrem[2], xrem[0], yrem[0]);
buffer[bufferSize] = tooAdd;
++bufferSize;
for (int i = 0; i < bufferSize; i++)
{
results.Add(new Triangle(buffer[i]));
}
return results;
}
///
/// Finds and fixes "pinch points," points where two polygon
/// vertices are at the same point.
///
/// If a pinch point is found, pin is broken up into poutA and poutB
/// and true is returned; otherwise, returns false.
///
/// Mostly for internal use.
///
/// O(N^2) time, which sucks...
///
/// The pin.
/// The pout A.
/// The pout B.
///
private static bool ResolvePinchPoint(Vertices pin, out Vertices poutA, out Vertices poutB)
{
poutA = new Vertices();
poutB = new Vertices();
if (pin.Count < 3)
return false;
bool hasPinchPoint = false;
int pinchIndexA = -1;
int pinchIndexB = -1;
for (int i = 0; i < pin.Count; ++i)
{
for (int j = i + 1; j < pin.Count; ++j)
{
//Don't worry about pinch points where the points
//are actually just dupe neighbors
if (Math.Abs(pin[i].X - pin[j].X) < Tol && Math.Abs(pin[i].Y - pin[j].Y) < Tol && j != i + 1)
{
pinchIndexA = i;
pinchIndexB = j;
hasPinchPoint = true;
break;
}
}
if (hasPinchPoint) break;
}
if (hasPinchPoint)
{
int sizeA = pinchIndexB - pinchIndexA;
if (sizeA == pin.Count) return false; //has dupe points at wraparound, not a problem here
for (int i = 0; i < sizeA; ++i)
{
int ind = Remainder(pinchIndexA + i, pin.Count); // is this right
poutA.Add(pin[ind]);
}
int sizeB = pin.Count - sizeA;
for (int i = 0; i < sizeB; ++i)
{
int ind = Remainder(pinchIndexB + i, pin.Count); // is this right
poutB.Add(pin[ind]);
}
}
return hasPinchPoint;
}
///
/// Fix for obnoxious behavior for the % operator for negative numbers...
///
/// The x.
/// The modulus.
///
private static int Remainder(int x, int modulus)
{
int rem = x % modulus;
while (rem < 0)
{
rem += modulus;
}
return rem;
}
private static Vertices AddTriangle(Triangle t, Vertices vertices)
{
// First, find vertices that connect
int firstP = -1;
int firstT = -1;
int secondP = -1;
int secondT = -1;
for (int i = 0; i < vertices.Count; i++)
{
if (t.X[0] == vertices[i].X && t.Y[0] == vertices[i].Y)
{
if (firstP == -1)
{
firstP = i;
firstT = 0;
}
else
{
secondP = i;
secondT = 0;
}
}
else if (t.X[1] == vertices[i].X && t.Y[1] == vertices[i].Y)
{
if (firstP == -1)
{
firstP = i;
firstT = 1;
}
else
{
secondP = i;
secondT = 1;
}
}
else if (t.X[2] == vertices[i].X && t.Y[2] == vertices[i].Y)
{
if (firstP == -1)
{
firstP = i;
firstT = 2;
}
else
{
secondP = i;
secondT = 2;
}
}
}
// Fix ordering if first should be last vertex of poly
if (firstP == 0 && secondP == vertices.Count - 1)
{
firstP = vertices.Count - 1;
secondP = 0;
}
// Didn't find it
if (secondP == -1)
{
return null;
}
// Find tip index on triangle
int tipT = 0;
if (tipT == firstT || tipT == secondT)
tipT = 1;
if (tipT == firstT || tipT == secondT)
tipT = 2;
Vertices result = new Vertices(vertices.Count + 1);
for (int i = 0; i < vertices.Count; i++)
{
result.Add(vertices[i]);
if (i == firstP)
result.Add(new Vector2(t.X[tipT], t.Y[tipT]));
}
return result;
}
///
/// Checks if vertex i is the tip of an ear in polygon defined by xv[] and
/// yv[].
///
/// Assumes clockwise orientation of polygon...ick
///
/// The i.
/// The xv.
/// The yv.
/// Length of the xv.
///
/// true if the specified i is ear; otherwise, false.
///
private static bool IsEar(int i, float[] xv, float[] yv, int xvLength)
{
float dx0, dy0, dx1, dy1;
if (i >= xvLength || i < 0 || xvLength < 3)
{
return false;
}
int upper = i + 1;
int lower = i - 1;
if (i == 0)
{
dx0 = xv[0] - xv[xvLength - 1];
dy0 = yv[0] - yv[xvLength - 1];
dx1 = xv[1] - xv[0];
dy1 = yv[1] - yv[0];
lower = xvLength - 1;
}
else if (i == xvLength - 1)
{
dx0 = xv[i] - xv[i - 1];
dy0 = yv[i] - yv[i - 1];
dx1 = xv[0] - xv[i];
dy1 = yv[0] - yv[i];
upper = 0;
}
else
{
dx0 = xv[i] - xv[i - 1];
dy0 = yv[i] - yv[i - 1];
dx1 = xv[i + 1] - xv[i];
dy1 = yv[i + 1] - yv[i];
}
float cross = dx0 * dy1 - dx1 * dy0;
if (cross > 0)
return false;
Triangle myTri = new Triangle(xv[i], yv[i], xv[upper], yv[upper],
xv[lower], yv[lower]);
for (int j = 0; j < xvLength; ++j)
{
if (j == i || j == lower || j == upper)
continue;
if (myTri.IsInside(xv[j], yv[j]))
return false;
}
return true;
}
}
public class Triangle
{
public float[] X;
public float[] Y;
//Constructor automatically fixes orientation to ccw
public Triangle(float x1, float y1, float x2, float y2, float x3, float y3)
{
X = new float[3];
Y = new float[3];
float dx1 = x2 - x1;
float dx2 = x3 - x1;
float dy1 = y2 - y1;
float dy2 = y3 - y1;
float cross = dx1 * dy2 - dx2 * dy1;
bool ccw = (cross > 0);
if (ccw)
{
X[0] = x1;
X[1] = x2;
X[2] = x3;
Y[0] = y1;
Y[1] = y2;
Y[2] = y3;
}
else
{
X[0] = x1;
X[1] = x3;
X[2] = x2;
Y[0] = y1;
Y[1] = y3;
Y[2] = y2;
}
}
public Triangle(Triangle t)
{
X = new float[3];
Y = new float[3];
X[0] = t.X[0];
X[1] = t.X[1];
X[2] = t.X[2];
Y[0] = t.Y[0];
Y[1] = t.Y[1];
Y[2] = t.Y[2];
}
public bool IsInside(float x, float y)
{
if (x < X[0] && x < X[1] && x < X[2]) return false;
if (x > X[0] && x > X[1] && x > X[2]) return false;
if (y < Y[0] && y < Y[1] && y < Y[2]) return false;
if (y > Y[0] && y > Y[1] && y > Y[2]) return false;
float vx2 = x - X[0];
float vy2 = y - Y[0];
float vx1 = X[1] - X[0];
float vy1 = Y[1] - Y[0];
float vx0 = X[2] - X[0];
float vy0 = Y[2] - Y[0];
float dot00 = vx0 * vx0 + vy0 * vy0;
float dot01 = vx0 * vx1 + vy0 * vy1;
float dot02 = vx0 * vx2 + vy0 * vy2;
float dot11 = vx1 * vx1 + vy1 * vy1;
float dot12 = vx1 * vx2 + vy1 * vy2;
float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
return ((u > 0) && (v > 0) && (u + v < 1));
}
}
}