/* * Farseer Physics Engine based on Box2D.XNA port: * Copyright (c) 2010 Ian Qvist * * Box2D.XNA port of Box2D: * Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler * * Original source Box2D: * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ using System; using System.Diagnostics; using FarseerPhysics.Collision.Shapes; using FarseerPhysics.Common; using Microsoft.Xna.Framework; namespace FarseerPhysics.Collision { /// /// A distance proxy is used by the GJK algorithm. /// It encapsulates any shape. /// public class DistanceProxy { internal float Radius; internal Vertices Vertices = new Vertices(); /// /// Initialize the proxy using the given shape. The shape /// must remain in scope while the proxy is in use. /// /// The shape. /// The index. public void Set(Shape shape, int index) { switch (shape.ShapeType) { case ShapeType.Circle: { CircleShape circle = (CircleShape)shape; Vertices.Clear(); Vertices.Add(circle.Position); Radius = circle.Radius; } break; case ShapeType.Polygon: { PolygonShape polygon = (PolygonShape)shape; Vertices.Clear(); for (int i = 0; i < polygon.Vertices.Count; i++) { Vertices.Add(polygon.Vertices[i]); } Radius = polygon.Radius; } break; case ShapeType.Loop: { LoopShape loop = (LoopShape)shape; Debug.Assert(0 <= index && index < loop.Vertices.Count); Vertices.Clear(); Vertices.Add(loop.Vertices[index]); Vertices.Add(index + 1 < loop.Vertices.Count ? loop.Vertices[index + 1] : loop.Vertices[0]); Radius = loop.Radius; } break; case ShapeType.Edge: { EdgeShape edge = (EdgeShape)shape; Vertices.Clear(); Vertices.Add(edge.Vertex1); Vertices.Add(edge.Vertex2); Radius = edge.Radius; } break; default: Debug.Assert(false); break; } } /// /// Get the supporting vertex index in the given direction. /// /// The direction. /// public int GetSupport(Vector2 direction) { int bestIndex = 0; float bestValue = Vector2.Dot(Vertices[0], direction); for (int i = 1; i < Vertices.Count; ++i) { float value = Vector2.Dot(Vertices[i], direction); if (value > bestValue) { bestIndex = i; bestValue = value; } } return bestIndex; } /// /// Get the supporting vertex in the given direction. /// /// The direction. /// public Vector2 GetSupportVertex(Vector2 direction) { int bestIndex = 0; float bestValue = Vector2.Dot(Vertices[0], direction); for (int i = 1; i < Vertices.Count; ++i) { float value = Vector2.Dot(Vertices[i], direction); if (value > bestValue) { bestIndex = i; bestValue = value; } } return Vertices[bestIndex]; } } /// /// Used to warm start ComputeDistance. /// Set count to zero on first call. /// public struct SimplexCache { /// /// Length or area /// public ushort Count; /// /// Vertices on shape A /// public FixedArray3 IndexA; /// /// Vertices on shape B /// public FixedArray3 IndexB; public float Metric; } /// /// Input for ComputeDistance. /// You have to option to use the shape radii /// in the computation. /// public class DistanceInput { public DistanceProxy ProxyA = new DistanceProxy(); public DistanceProxy ProxyB = new DistanceProxy(); public Transform TransformA; public Transform TransformB; public bool UseRadii; } /// /// Output for ComputeDistance. /// public struct DistanceOutput { public float Distance; /// /// Number of GJK iterations used /// public int Iterations; /// /// Closest point on shapeA /// public Vector2 PointA; /// /// Closest point on shapeB /// public Vector2 PointB; } internal struct SimplexVertex { /// /// Barycentric coordinate for closest point /// public float A; /// /// wA index /// public int IndexA; /// /// wB index /// public int IndexB; /// /// wB - wA /// public Vector2 W; /// /// Support point in proxyA /// public Vector2 WA; /// /// Support point in proxyB /// public Vector2 WB; } internal struct Simplex { internal int Count; internal FixedArray3 V; internal void ReadCache(ref SimplexCache cache, DistanceProxy proxyA, ref Transform transformA, DistanceProxy proxyB, ref Transform transformB) { Debug.Assert(cache.Count <= 3); // Copy data from cache. Count = cache.Count; for (int i = 0; i < Count; ++i) { SimplexVertex v = V[i]; v.IndexA = cache.IndexA[i]; v.IndexB = cache.IndexB[i]; Vector2 wALocal = proxyA.Vertices[v.IndexA]; Vector2 wBLocal = proxyB.Vertices[v.IndexB]; v.WA = MathUtils.Multiply(ref transformA, wALocal); v.WB = MathUtils.Multiply(ref transformB, wBLocal); v.W = v.WB - v.WA; v.A = 0.0f; V[i] = v; } // Compute the new simplex metric, if it is substantially different than // old metric then flush the simplex. if (Count > 1) { float metric1 = cache.Metric; float metric2 = GetMetric(); if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < Settings.Epsilon) { // Reset the simplex. Count = 0; } } // If the cache is empty or invalid ... if (Count == 0) { SimplexVertex v = V[0]; v.IndexA = 0; v.IndexB = 0; Vector2 wALocal = proxyA.Vertices[0]; Vector2 wBLocal = proxyB.Vertices[0]; v.WA = MathUtils.Multiply(ref transformA, wALocal); v.WB = MathUtils.Multiply(ref transformB, wBLocal); v.W = v.WB - v.WA; V[0] = v; Count = 1; } } internal void WriteCache(ref SimplexCache cache) { cache.Metric = GetMetric(); cache.Count = (UInt16)Count; for (int i = 0; i < Count; ++i) { cache.IndexA[i] = (byte)(V[i].IndexA); cache.IndexB[i] = (byte)(V[i].IndexB); } } internal Vector2 GetSearchDirection() { switch (Count) { case 1: return -V[0].W; case 2: { Vector2 e12 = V[1].W - V[0].W; float sgn = MathUtils.Cross(e12, -V[0].W); if (sgn > 0.0f) { // Origin is left of e12. return new Vector2(-e12.Y, e12.X); } else { // Origin is right of e12. return new Vector2(e12.Y, -e12.X); } } default: Debug.Assert(false); return Vector2.Zero; } } internal Vector2 GetClosestPoint() { switch (Count) { case 0: Debug.Assert(false); return Vector2.Zero; case 1: return V[0].W; case 2: return V[0].A * V[0].W + V[1].A * V[1].W; case 3: return Vector2.Zero; default: Debug.Assert(false); return Vector2.Zero; } } internal void GetWitnessPoints(out Vector2 pA, out Vector2 pB) { switch (Count) { case 0: pA = Vector2.Zero; pB = Vector2.Zero; Debug.Assert(false); break; case 1: pA = V[0].WA; pB = V[0].WB; break; case 2: pA = V[0].A * V[0].WA + V[1].A * V[1].WA; pB = V[0].A * V[0].WB + V[1].A * V[1].WB; break; case 3: pA = V[0].A * V[0].WA + V[1].A * V[1].WA + V[2].A * V[2].WA; pB = pA; break; default: throw new Exception(); } } internal float GetMetric() { switch (Count) { case 0: Debug.Assert(false); return 0.0f; case 1: return 0.0f; case 2: return (V[0].W - V[1].W).Length(); case 3: return MathUtils.Cross(V[1].W - V[0].W, V[2].W - V[0].W); default: Debug.Assert(false); return 0.0f; } } // Solve a line segment using barycentric coordinates. // // p = a1 * w1 + a2 * w2 // a1 + a2 = 1 // // The vector from the origin to the closest point on the line is // perpendicular to the line. // e12 = w2 - w1 // dot(p, e) = 0 // a1 * dot(w1, e) + a2 * dot(w2, e) = 0 // // 2-by-2 linear system // [1 1 ][a1] = [1] // [w1.e12 w2.e12][a2] = [0] // // Define // d12_1 = dot(w2, e12) // d12_2 = -dot(w1, e12) // d12 = d12_1 + d12_2 // // Solution // a1 = d12_1 / d12 // a2 = d12_2 / d12 internal void Solve2() { Vector2 w1 = V[0].W; Vector2 w2 = V[1].W; Vector2 e12 = w2 - w1; // w1 region float d12_2 = -Vector2.Dot(w1, e12); if (d12_2 <= 0.0f) { // a2 <= 0, so we clamp it to 0 SimplexVertex v0 = V[0]; v0.A = 1.0f; V[0] = v0; Count = 1; return; } // w2 region float d12_1 = Vector2.Dot(w2, e12); if (d12_1 <= 0.0f) { // a1 <= 0, so we clamp it to 0 SimplexVertex v1 = V[1]; v1.A = 1.0f; V[1] = v1; Count = 1; V[0] = V[1]; return; } // Must be in e12 region. float inv_d12 = 1.0f / (d12_1 + d12_2); SimplexVertex v0_2 = V[0]; SimplexVertex v1_2 = V[1]; v0_2.A = d12_1 * inv_d12; v1_2.A = d12_2 * inv_d12; V[0] = v0_2; V[1] = v1_2; Count = 2; } // Possible regions: // - points[2] // - edge points[0]-points[2] // - edge points[1]-points[2] // - inside the triangle internal void Solve3() { Vector2 w1 = V[0].W; Vector2 w2 = V[1].W; Vector2 w3 = V[2].W; // Edge12 // [1 1 ][a1] = [1] // [w1.e12 w2.e12][a2] = [0] // a3 = 0 Vector2 e12 = w2 - w1; float w1e12 = Vector2.Dot(w1, e12); float w2e12 = Vector2.Dot(w2, e12); float d12_1 = w2e12; float d12_2 = -w1e12; // Edge13 // [1 1 ][a1] = [1] // [w1.e13 w3.e13][a3] = [0] // a2 = 0 Vector2 e13 = w3 - w1; float w1e13 = Vector2.Dot(w1, e13); float w3e13 = Vector2.Dot(w3, e13); float d13_1 = w3e13; float d13_2 = -w1e13; // Edge23 // [1 1 ][a2] = [1] // [w2.e23 w3.e23][a3] = [0] // a1 = 0 Vector2 e23 = w3 - w2; float w2e23 = Vector2.Dot(w2, e23); float w3e23 = Vector2.Dot(w3, e23); float d23_1 = w3e23; float d23_2 = -w2e23; // Triangle123 float n123 = MathUtils.Cross(e12, e13); float d123_1 = n123 * MathUtils.Cross(w2, w3); float d123_2 = n123 * MathUtils.Cross(w3, w1); float d123_3 = n123 * MathUtils.Cross(w1, w2); // w1 region if (d12_2 <= 0.0f && d13_2 <= 0.0f) { SimplexVertex v0_1 = V[0]; v0_1.A = 1.0f; V[0] = v0_1; Count = 1; return; } // e12 if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f) { float inv_d12 = 1.0f / (d12_1 + d12_2); SimplexVertex v0_2 = V[0]; SimplexVertex v1_2 = V[1]; v0_2.A = d12_1 * inv_d12; v1_2.A = d12_2 * inv_d12; V[0] = v0_2; V[1] = v1_2; Count = 2; return; } // e13 if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f) { float inv_d13 = 1.0f / (d13_1 + d13_2); SimplexVertex v0_3 = V[0]; SimplexVertex v2_3 = V[2]; v0_3.A = d13_1 * inv_d13; v2_3.A = d13_2 * inv_d13; V[0] = v0_3; V[2] = v2_3; Count = 2; V[1] = V[2]; return; } // w2 region if (d12_1 <= 0.0f && d23_2 <= 0.0f) { SimplexVertex v1_4 = V[1]; v1_4.A = 1.0f; V[1] = v1_4; Count = 1; V[0] = V[1]; return; } // w3 region if (d13_1 <= 0.0f && d23_1 <= 0.0f) { SimplexVertex v2_5 = V[2]; v2_5.A = 1.0f; V[2] = v2_5; Count = 1; V[0] = V[2]; return; } // e23 if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f) { float inv_d23 = 1.0f / (d23_1 + d23_2); SimplexVertex v1_6 = V[1]; SimplexVertex v2_6 = V[2]; v1_6.A = d23_1 * inv_d23; v2_6.A = d23_2 * inv_d23; V[1] = v1_6; V[2] = v2_6; Count = 2; V[0] = V[2]; return; } // Must be in triangle123 float inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3); SimplexVertex v0_7 = V[0]; SimplexVertex v1_7 = V[1]; SimplexVertex v2_7 = V[2]; v0_7.A = d123_1 * inv_d123; v1_7.A = d123_2 * inv_d123; v2_7.A = d123_3 * inv_d123; V[0] = v0_7; V[1] = v1_7; V[2] = v2_7; Count = 3; } } public static class Distance { public static int GJKCalls, GJKIters, GJKMaxIters; public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, DistanceInput input) { cache = new SimplexCache(); ++GJKCalls; // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, input.ProxyA, ref input.TransformA, input.ProxyB, ref input.TransformB); // Get simplex vertices as an array. const int k_maxIters = 20; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3 saveA = new FixedArray3(); FixedArray3 saveB = new FixedArray3(); Vector2 closestPoint = simplex.GetClosestPoint(); float distanceSqr1 = closestPoint.LengthSquared(); float distanceSqr2 = distanceSqr1; // Main iteration loop. int iter = 0; while (iter < k_maxIters) { // Copy simplex so we can identify duplicates. int saveCount = simplex.Count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex.V[i].IndexA; saveB[i] = simplex.V[i].IndexB; } switch (simplex.Count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.Count == 3) { break; } // Compute closest point. Vector2 p = simplex.GetClosestPoint(); distanceSqr2 = p.LengthSquared(); // Ensure progress if (distanceSqr2 >= distanceSqr1) { //break; } distanceSqr1 = distanceSqr2; // Get search direction. Vector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.Epsilon * Settings.Epsilon) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex.V[simplex.Count]; vertex.IndexA = input.ProxyA.GetSupport(MathUtils.MultiplyT(ref input.TransformA.R, -d)); vertex.WA = MathUtils.Multiply(ref input.TransformA, input.ProxyA.Vertices[vertex.IndexA]); vertex.IndexB = input.ProxyB.GetSupport(MathUtils.MultiplyT(ref input.TransformB.R, d)); vertex.WB = MathUtils.Multiply(ref input.TransformB, input.ProxyB.Vertices[vertex.IndexB]); vertex.W = vertex.WB - vertex.WA; simplex.V[simplex.Count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; ++GJKIters; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.Count; } GJKMaxIters = Math.Max(GJKMaxIters, iter); // Prepare output. simplex.GetWitnessPoints(out output.PointA, out output.PointB); output.Distance = (output.PointA - output.PointB).Length(); output.Iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.UseRadii) { float rA = input.ProxyA.Radius; float rB = input.ProxyB.Radius; if (output.Distance > rA + rB && output.Distance > Settings.Epsilon) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.Distance -= rA + rB; Vector2 normal = output.PointB - output.PointA; normal.Normalize(); output.PointA += rA * normal; output.PointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vector2 p = 0.5f * (output.PointA + output.PointB); output.PointA = p; output.PointB = p; output.Distance = 0.0f; } } } } }