Adding initial files
This commit is contained in:
1945
axios/Collision/Collision.cs
Normal file
1945
axios/Collision/Collision.cs
Normal file
File diff suppressed because it is too large
Load Diff
780
axios/Collision/Distance.cs
Normal file
780
axios/Collision/Distance.cs
Normal file
@@ -0,0 +1,780 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using System;
|
||||
using System.Diagnostics;
|
||||
using FarseerPhysics.Collision.Shapes;
|
||||
using FarseerPhysics.Common;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision
|
||||
{
|
||||
/// <summary>
|
||||
/// A distance proxy is used by the GJK algorithm.
|
||||
/// It encapsulates any shape.
|
||||
/// </summary>
|
||||
public class DistanceProxy
|
||||
{
|
||||
internal float Radius;
|
||||
internal Vertices Vertices = new Vertices();
|
||||
|
||||
/// <summary>
|
||||
/// Initialize the proxy using the given shape. The shape
|
||||
/// must remain in scope while the proxy is in use.
|
||||
/// </summary>
|
||||
/// <param name="shape">The shape.</param>
|
||||
/// <param name="index">The index.</param>
|
||||
public void Set(Shape shape, int index)
|
||||
{
|
||||
switch (shape.ShapeType)
|
||||
{
|
||||
case ShapeType.Circle:
|
||||
{
|
||||
CircleShape circle = (CircleShape)shape;
|
||||
Vertices.Clear();
|
||||
Vertices.Add(circle.Position);
|
||||
Radius = circle.Radius;
|
||||
}
|
||||
break;
|
||||
|
||||
case ShapeType.Polygon:
|
||||
{
|
||||
PolygonShape polygon = (PolygonShape)shape;
|
||||
Vertices.Clear();
|
||||
for (int i = 0; i < polygon.Vertices.Count; i++)
|
||||
{
|
||||
Vertices.Add(polygon.Vertices[i]);
|
||||
}
|
||||
Radius = polygon.Radius;
|
||||
}
|
||||
break;
|
||||
|
||||
case ShapeType.Loop:
|
||||
{
|
||||
LoopShape loop = (LoopShape)shape;
|
||||
Debug.Assert(0 <= index && index < loop.Vertices.Count);
|
||||
Vertices.Clear();
|
||||
Vertices.Add(loop.Vertices[index]);
|
||||
Vertices.Add(index + 1 < loop.Vertices.Count ? loop.Vertices[index + 1] : loop.Vertices[0]);
|
||||
|
||||
Radius = loop.Radius;
|
||||
}
|
||||
break;
|
||||
|
||||
case ShapeType.Edge:
|
||||
{
|
||||
EdgeShape edge = (EdgeShape)shape;
|
||||
Vertices.Clear();
|
||||
Vertices.Add(edge.Vertex1);
|
||||
Vertices.Add(edge.Vertex2);
|
||||
Radius = edge.Radius;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
Debug.Assert(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get the supporting vertex index in the given direction.
|
||||
/// </summary>
|
||||
/// <param name="direction">The direction.</param>
|
||||
/// <returns></returns>
|
||||
public int GetSupport(Vector2 direction)
|
||||
{
|
||||
int bestIndex = 0;
|
||||
float bestValue = Vector2.Dot(Vertices[0], direction);
|
||||
for (int i = 1; i < Vertices.Count; ++i)
|
||||
{
|
||||
float value = Vector2.Dot(Vertices[i], direction);
|
||||
if (value > bestValue)
|
||||
{
|
||||
bestIndex = i;
|
||||
bestValue = value;
|
||||
}
|
||||
}
|
||||
|
||||
return bestIndex;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get the supporting vertex in the given direction.
|
||||
/// </summary>
|
||||
/// <param name="direction">The direction.</param>
|
||||
/// <returns></returns>
|
||||
public Vector2 GetSupportVertex(Vector2 direction)
|
||||
{
|
||||
int bestIndex = 0;
|
||||
float bestValue = Vector2.Dot(Vertices[0], direction);
|
||||
for (int i = 1; i < Vertices.Count; ++i)
|
||||
{
|
||||
float value = Vector2.Dot(Vertices[i], direction);
|
||||
if (value > bestValue)
|
||||
{
|
||||
bestIndex = i;
|
||||
bestValue = value;
|
||||
}
|
||||
}
|
||||
|
||||
return Vertices[bestIndex];
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Used to warm start ComputeDistance.
|
||||
/// Set count to zero on first call.
|
||||
/// </summary>
|
||||
public struct SimplexCache
|
||||
{
|
||||
/// <summary>
|
||||
/// Length or area
|
||||
/// </summary>
|
||||
public ushort Count;
|
||||
|
||||
/// <summary>
|
||||
/// Vertices on shape A
|
||||
/// </summary>
|
||||
public FixedArray3<byte> IndexA;
|
||||
|
||||
/// <summary>
|
||||
/// Vertices on shape B
|
||||
/// </summary>
|
||||
public FixedArray3<byte> IndexB;
|
||||
|
||||
public float Metric;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Input for ComputeDistance.
|
||||
/// You have to option to use the shape radii
|
||||
/// in the computation.
|
||||
/// </summary>
|
||||
public class DistanceInput
|
||||
{
|
||||
public DistanceProxy ProxyA = new DistanceProxy();
|
||||
public DistanceProxy ProxyB = new DistanceProxy();
|
||||
public Transform TransformA;
|
||||
public Transform TransformB;
|
||||
public bool UseRadii;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Output for ComputeDistance.
|
||||
/// </summary>
|
||||
public struct DistanceOutput
|
||||
{
|
||||
public float Distance;
|
||||
|
||||
/// <summary>
|
||||
/// Number of GJK iterations used
|
||||
/// </summary>
|
||||
public int Iterations;
|
||||
|
||||
/// <summary>
|
||||
/// Closest point on shapeA
|
||||
/// </summary>
|
||||
public Vector2 PointA;
|
||||
|
||||
/// <summary>
|
||||
/// Closest point on shapeB
|
||||
/// </summary>
|
||||
public Vector2 PointB;
|
||||
}
|
||||
|
||||
internal struct SimplexVertex
|
||||
{
|
||||
/// <summary>
|
||||
/// Barycentric coordinate for closest point
|
||||
/// </summary>
|
||||
public float A;
|
||||
|
||||
/// <summary>
|
||||
/// wA index
|
||||
/// </summary>
|
||||
public int IndexA;
|
||||
|
||||
/// <summary>
|
||||
/// wB index
|
||||
/// </summary>
|
||||
public int IndexB;
|
||||
|
||||
/// <summary>
|
||||
/// wB - wA
|
||||
/// </summary>
|
||||
public Vector2 W;
|
||||
|
||||
/// <summary>
|
||||
/// Support point in proxyA
|
||||
/// </summary>
|
||||
public Vector2 WA;
|
||||
|
||||
/// <summary>
|
||||
/// Support point in proxyB
|
||||
/// </summary>
|
||||
public Vector2 WB;
|
||||
}
|
||||
|
||||
internal struct Simplex
|
||||
{
|
||||
internal int Count;
|
||||
internal FixedArray3<SimplexVertex> V;
|
||||
|
||||
internal void ReadCache(ref SimplexCache cache,
|
||||
DistanceProxy proxyA, ref Transform transformA,
|
||||
DistanceProxy proxyB, ref Transform transformB)
|
||||
{
|
||||
Debug.Assert(cache.Count <= 3);
|
||||
|
||||
// Copy data from cache.
|
||||
Count = cache.Count;
|
||||
for (int i = 0; i < Count; ++i)
|
||||
{
|
||||
SimplexVertex v = V[i];
|
||||
v.IndexA = cache.IndexA[i];
|
||||
v.IndexB = cache.IndexB[i];
|
||||
Vector2 wALocal = proxyA.Vertices[v.IndexA];
|
||||
Vector2 wBLocal = proxyB.Vertices[v.IndexB];
|
||||
v.WA = MathUtils.Multiply(ref transformA, wALocal);
|
||||
v.WB = MathUtils.Multiply(ref transformB, wBLocal);
|
||||
v.W = v.WB - v.WA;
|
||||
v.A = 0.0f;
|
||||
V[i] = v;
|
||||
}
|
||||
|
||||
// Compute the new simplex metric, if it is substantially different than
|
||||
// old metric then flush the simplex.
|
||||
if (Count > 1)
|
||||
{
|
||||
float metric1 = cache.Metric;
|
||||
float metric2 = GetMetric();
|
||||
if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < Settings.Epsilon)
|
||||
{
|
||||
// Reset the simplex.
|
||||
Count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// If the cache is empty or invalid ...
|
||||
if (Count == 0)
|
||||
{
|
||||
SimplexVertex v = V[0];
|
||||
v.IndexA = 0;
|
||||
v.IndexB = 0;
|
||||
Vector2 wALocal = proxyA.Vertices[0];
|
||||
Vector2 wBLocal = proxyB.Vertices[0];
|
||||
v.WA = MathUtils.Multiply(ref transformA, wALocal);
|
||||
v.WB = MathUtils.Multiply(ref transformB, wBLocal);
|
||||
v.W = v.WB - v.WA;
|
||||
V[0] = v;
|
||||
Count = 1;
|
||||
}
|
||||
}
|
||||
|
||||
internal void WriteCache(ref SimplexCache cache)
|
||||
{
|
||||
cache.Metric = GetMetric();
|
||||
cache.Count = (UInt16)Count;
|
||||
for (int i = 0; i < Count; ++i)
|
||||
{
|
||||
cache.IndexA[i] = (byte)(V[i].IndexA);
|
||||
cache.IndexB[i] = (byte)(V[i].IndexB);
|
||||
}
|
||||
}
|
||||
|
||||
internal Vector2 GetSearchDirection()
|
||||
{
|
||||
switch (Count)
|
||||
{
|
||||
case 1:
|
||||
return -V[0].W;
|
||||
|
||||
case 2:
|
||||
{
|
||||
Vector2 e12 = V[1].W - V[0].W;
|
||||
float sgn = MathUtils.Cross(e12, -V[0].W);
|
||||
if (sgn > 0.0f)
|
||||
{
|
||||
// Origin is left of e12.
|
||||
return new Vector2(-e12.Y, e12.X);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Origin is right of e12.
|
||||
return new Vector2(e12.Y, -e12.X);
|
||||
}
|
||||
}
|
||||
|
||||
default:
|
||||
Debug.Assert(false);
|
||||
return Vector2.Zero;
|
||||
}
|
||||
}
|
||||
|
||||
internal Vector2 GetClosestPoint()
|
||||
{
|
||||
switch (Count)
|
||||
{
|
||||
case 0:
|
||||
Debug.Assert(false);
|
||||
return Vector2.Zero;
|
||||
|
||||
case 1:
|
||||
return V[0].W;
|
||||
|
||||
case 2:
|
||||
return V[0].A * V[0].W + V[1].A * V[1].W;
|
||||
|
||||
case 3:
|
||||
return Vector2.Zero;
|
||||
|
||||
default:
|
||||
Debug.Assert(false);
|
||||
return Vector2.Zero;
|
||||
}
|
||||
}
|
||||
|
||||
internal void GetWitnessPoints(out Vector2 pA, out Vector2 pB)
|
||||
{
|
||||
switch (Count)
|
||||
{
|
||||
case 0:
|
||||
pA = Vector2.Zero;
|
||||
pB = Vector2.Zero;
|
||||
Debug.Assert(false);
|
||||
break;
|
||||
|
||||
case 1:
|
||||
pA = V[0].WA;
|
||||
pB = V[0].WB;
|
||||
break;
|
||||
|
||||
case 2:
|
||||
pA = V[0].A * V[0].WA + V[1].A * V[1].WA;
|
||||
pB = V[0].A * V[0].WB + V[1].A * V[1].WB;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
pA = V[0].A * V[0].WA + V[1].A * V[1].WA + V[2].A * V[2].WA;
|
||||
pB = pA;
|
||||
break;
|
||||
|
||||
default:
|
||||
throw new Exception();
|
||||
}
|
||||
}
|
||||
|
||||
internal float GetMetric()
|
||||
{
|
||||
switch (Count)
|
||||
{
|
||||
case 0:
|
||||
Debug.Assert(false);
|
||||
return 0.0f;
|
||||
|
||||
case 1:
|
||||
return 0.0f;
|
||||
|
||||
case 2:
|
||||
return (V[0].W - V[1].W).Length();
|
||||
|
||||
case 3:
|
||||
return MathUtils.Cross(V[1].W - V[0].W, V[2].W - V[0].W);
|
||||
|
||||
default:
|
||||
Debug.Assert(false);
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
// Solve a line segment using barycentric coordinates.
|
||||
//
|
||||
// p = a1 * w1 + a2 * w2
|
||||
// a1 + a2 = 1
|
||||
//
|
||||
// The vector from the origin to the closest point on the line is
|
||||
// perpendicular to the line.
|
||||
// e12 = w2 - w1
|
||||
// dot(p, e) = 0
|
||||
// a1 * dot(w1, e) + a2 * dot(w2, e) = 0
|
||||
//
|
||||
// 2-by-2 linear system
|
||||
// [1 1 ][a1] = [1]
|
||||
// [w1.e12 w2.e12][a2] = [0]
|
||||
//
|
||||
// Define
|
||||
// d12_1 = dot(w2, e12)
|
||||
// d12_2 = -dot(w1, e12)
|
||||
// d12 = d12_1 + d12_2
|
||||
//
|
||||
// Solution
|
||||
// a1 = d12_1 / d12
|
||||
// a2 = d12_2 / d12
|
||||
|
||||
internal void Solve2()
|
||||
{
|
||||
Vector2 w1 = V[0].W;
|
||||
Vector2 w2 = V[1].W;
|
||||
Vector2 e12 = w2 - w1;
|
||||
|
||||
// w1 region
|
||||
float d12_2 = -Vector2.Dot(w1, e12);
|
||||
if (d12_2 <= 0.0f)
|
||||
{
|
||||
// a2 <= 0, so we clamp it to 0
|
||||
SimplexVertex v0 = V[0];
|
||||
v0.A = 1.0f;
|
||||
V[0] = v0;
|
||||
Count = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
// w2 region
|
||||
float d12_1 = Vector2.Dot(w2, e12);
|
||||
if (d12_1 <= 0.0f)
|
||||
{
|
||||
// a1 <= 0, so we clamp it to 0
|
||||
SimplexVertex v1 = V[1];
|
||||
v1.A = 1.0f;
|
||||
V[1] = v1;
|
||||
Count = 1;
|
||||
V[0] = V[1];
|
||||
return;
|
||||
}
|
||||
|
||||
// Must be in e12 region.
|
||||
float inv_d12 = 1.0f / (d12_1 + d12_2);
|
||||
SimplexVertex v0_2 = V[0];
|
||||
SimplexVertex v1_2 = V[1];
|
||||
v0_2.A = d12_1 * inv_d12;
|
||||
v1_2.A = d12_2 * inv_d12;
|
||||
V[0] = v0_2;
|
||||
V[1] = v1_2;
|
||||
Count = 2;
|
||||
}
|
||||
|
||||
// Possible regions:
|
||||
// - points[2]
|
||||
// - edge points[0]-points[2]
|
||||
// - edge points[1]-points[2]
|
||||
// - inside the triangle
|
||||
internal void Solve3()
|
||||
{
|
||||
Vector2 w1 = V[0].W;
|
||||
Vector2 w2 = V[1].W;
|
||||
Vector2 w3 = V[2].W;
|
||||
|
||||
// Edge12
|
||||
// [1 1 ][a1] = [1]
|
||||
// [w1.e12 w2.e12][a2] = [0]
|
||||
// a3 = 0
|
||||
Vector2 e12 = w2 - w1;
|
||||
float w1e12 = Vector2.Dot(w1, e12);
|
||||
float w2e12 = Vector2.Dot(w2, e12);
|
||||
float d12_1 = w2e12;
|
||||
float d12_2 = -w1e12;
|
||||
|
||||
// Edge13
|
||||
// [1 1 ][a1] = [1]
|
||||
// [w1.e13 w3.e13][a3] = [0]
|
||||
// a2 = 0
|
||||
Vector2 e13 = w3 - w1;
|
||||
float w1e13 = Vector2.Dot(w1, e13);
|
||||
float w3e13 = Vector2.Dot(w3, e13);
|
||||
float d13_1 = w3e13;
|
||||
float d13_2 = -w1e13;
|
||||
|
||||
// Edge23
|
||||
// [1 1 ][a2] = [1]
|
||||
// [w2.e23 w3.e23][a3] = [0]
|
||||
// a1 = 0
|
||||
Vector2 e23 = w3 - w2;
|
||||
float w2e23 = Vector2.Dot(w2, e23);
|
||||
float w3e23 = Vector2.Dot(w3, e23);
|
||||
float d23_1 = w3e23;
|
||||
float d23_2 = -w2e23;
|
||||
|
||||
// Triangle123
|
||||
float n123 = MathUtils.Cross(e12, e13);
|
||||
|
||||
float d123_1 = n123 * MathUtils.Cross(w2, w3);
|
||||
float d123_2 = n123 * MathUtils.Cross(w3, w1);
|
||||
float d123_3 = n123 * MathUtils.Cross(w1, w2);
|
||||
|
||||
// w1 region
|
||||
if (d12_2 <= 0.0f && d13_2 <= 0.0f)
|
||||
{
|
||||
SimplexVertex v0_1 = V[0];
|
||||
v0_1.A = 1.0f;
|
||||
V[0] = v0_1;
|
||||
Count = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
// e12
|
||||
if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f)
|
||||
{
|
||||
float inv_d12 = 1.0f / (d12_1 + d12_2);
|
||||
SimplexVertex v0_2 = V[0];
|
||||
SimplexVertex v1_2 = V[1];
|
||||
v0_2.A = d12_1 * inv_d12;
|
||||
v1_2.A = d12_2 * inv_d12;
|
||||
V[0] = v0_2;
|
||||
V[1] = v1_2;
|
||||
Count = 2;
|
||||
return;
|
||||
}
|
||||
|
||||
// e13
|
||||
if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f)
|
||||
{
|
||||
float inv_d13 = 1.0f / (d13_1 + d13_2);
|
||||
SimplexVertex v0_3 = V[0];
|
||||
SimplexVertex v2_3 = V[2];
|
||||
v0_3.A = d13_1 * inv_d13;
|
||||
v2_3.A = d13_2 * inv_d13;
|
||||
V[0] = v0_3;
|
||||
V[2] = v2_3;
|
||||
Count = 2;
|
||||
V[1] = V[2];
|
||||
return;
|
||||
}
|
||||
|
||||
// w2 region
|
||||
if (d12_1 <= 0.0f && d23_2 <= 0.0f)
|
||||
{
|
||||
SimplexVertex v1_4 = V[1];
|
||||
v1_4.A = 1.0f;
|
||||
V[1] = v1_4;
|
||||
Count = 1;
|
||||
V[0] = V[1];
|
||||
return;
|
||||
}
|
||||
|
||||
// w3 region
|
||||
if (d13_1 <= 0.0f && d23_1 <= 0.0f)
|
||||
{
|
||||
SimplexVertex v2_5 = V[2];
|
||||
v2_5.A = 1.0f;
|
||||
V[2] = v2_5;
|
||||
Count = 1;
|
||||
V[0] = V[2];
|
||||
return;
|
||||
}
|
||||
|
||||
// e23
|
||||
if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f)
|
||||
{
|
||||
float inv_d23 = 1.0f / (d23_1 + d23_2);
|
||||
SimplexVertex v1_6 = V[1];
|
||||
SimplexVertex v2_6 = V[2];
|
||||
v1_6.A = d23_1 * inv_d23;
|
||||
v2_6.A = d23_2 * inv_d23;
|
||||
V[1] = v1_6;
|
||||
V[2] = v2_6;
|
||||
Count = 2;
|
||||
V[0] = V[2];
|
||||
return;
|
||||
}
|
||||
|
||||
// Must be in triangle123
|
||||
float inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3);
|
||||
SimplexVertex v0_7 = V[0];
|
||||
SimplexVertex v1_7 = V[1];
|
||||
SimplexVertex v2_7 = V[2];
|
||||
v0_7.A = d123_1 * inv_d123;
|
||||
v1_7.A = d123_2 * inv_d123;
|
||||
v2_7.A = d123_3 * inv_d123;
|
||||
V[0] = v0_7;
|
||||
V[1] = v1_7;
|
||||
V[2] = v2_7;
|
||||
Count = 3;
|
||||
}
|
||||
}
|
||||
|
||||
public static class Distance
|
||||
{
|
||||
public static int GJKCalls, GJKIters, GJKMaxIters;
|
||||
|
||||
public static void ComputeDistance(out DistanceOutput output,
|
||||
out SimplexCache cache,
|
||||
DistanceInput input)
|
||||
{
|
||||
cache = new SimplexCache();
|
||||
++GJKCalls;
|
||||
|
||||
// Initialize the simplex.
|
||||
Simplex simplex = new Simplex();
|
||||
simplex.ReadCache(ref cache, input.ProxyA, ref input.TransformA, input.ProxyB, ref input.TransformB);
|
||||
|
||||
// Get simplex vertices as an array.
|
||||
const int k_maxIters = 20;
|
||||
|
||||
// These store the vertices of the last simplex so that we
|
||||
// can check for duplicates and prevent cycling.
|
||||
FixedArray3<int> saveA = new FixedArray3<int>();
|
||||
FixedArray3<int> saveB = new FixedArray3<int>();
|
||||
|
||||
Vector2 closestPoint = simplex.GetClosestPoint();
|
||||
float distanceSqr1 = closestPoint.LengthSquared();
|
||||
float distanceSqr2 = distanceSqr1;
|
||||
|
||||
// Main iteration loop.
|
||||
int iter = 0;
|
||||
while (iter < k_maxIters)
|
||||
{
|
||||
// Copy simplex so we can identify duplicates.
|
||||
int saveCount = simplex.Count;
|
||||
for (int i = 0; i < saveCount; ++i)
|
||||
{
|
||||
saveA[i] = simplex.V[i].IndexA;
|
||||
saveB[i] = simplex.V[i].IndexB;
|
||||
}
|
||||
|
||||
switch (simplex.Count)
|
||||
{
|
||||
case 1:
|
||||
break;
|
||||
|
||||
case 2:
|
||||
simplex.Solve2();
|
||||
break;
|
||||
|
||||
case 3:
|
||||
simplex.Solve3();
|
||||
break;
|
||||
|
||||
default:
|
||||
Debug.Assert(false);
|
||||
break;
|
||||
}
|
||||
|
||||
// If we have 3 points, then the origin is in the corresponding triangle.
|
||||
if (simplex.Count == 3)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// Compute closest point.
|
||||
Vector2 p = simplex.GetClosestPoint();
|
||||
distanceSqr2 = p.LengthSquared();
|
||||
|
||||
// Ensure progress
|
||||
if (distanceSqr2 >= distanceSqr1)
|
||||
{
|
||||
//break;
|
||||
}
|
||||
distanceSqr1 = distanceSqr2;
|
||||
|
||||
// Get search direction.
|
||||
Vector2 d = simplex.GetSearchDirection();
|
||||
|
||||
// Ensure the search direction is numerically fit.
|
||||
if (d.LengthSquared() < Settings.Epsilon * Settings.Epsilon)
|
||||
{
|
||||
// The origin is probably contained by a line segment
|
||||
// or triangle. Thus the shapes are overlapped.
|
||||
|
||||
// We can't return zero here even though there may be overlap.
|
||||
// In case the simplex is a point, segment, or triangle it is difficult
|
||||
// to determine if the origin is contained in the CSO or very close to it.
|
||||
break;
|
||||
}
|
||||
|
||||
// Compute a tentative new simplex vertex using support points.
|
||||
SimplexVertex vertex = simplex.V[simplex.Count];
|
||||
vertex.IndexA = input.ProxyA.GetSupport(MathUtils.MultiplyT(ref input.TransformA.R, -d));
|
||||
vertex.WA = MathUtils.Multiply(ref input.TransformA, input.ProxyA.Vertices[vertex.IndexA]);
|
||||
|
||||
vertex.IndexB = input.ProxyB.GetSupport(MathUtils.MultiplyT(ref input.TransformB.R, d));
|
||||
vertex.WB = MathUtils.Multiply(ref input.TransformB, input.ProxyB.Vertices[vertex.IndexB]);
|
||||
vertex.W = vertex.WB - vertex.WA;
|
||||
simplex.V[simplex.Count] = vertex;
|
||||
|
||||
// Iteration count is equated to the number of support point calls.
|
||||
++iter;
|
||||
++GJKIters;
|
||||
|
||||
// Check for duplicate support points. This is the main termination criteria.
|
||||
bool duplicate = false;
|
||||
for (int i = 0; i < saveCount; ++i)
|
||||
{
|
||||
if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
|
||||
{
|
||||
duplicate = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If we found a duplicate support point we must exit to avoid cycling.
|
||||
if (duplicate)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// New vertex is ok and needed.
|
||||
++simplex.Count;
|
||||
}
|
||||
|
||||
GJKMaxIters = Math.Max(GJKMaxIters, iter);
|
||||
|
||||
// Prepare output.
|
||||
simplex.GetWitnessPoints(out output.PointA, out output.PointB);
|
||||
output.Distance = (output.PointA - output.PointB).Length();
|
||||
output.Iterations = iter;
|
||||
|
||||
// Cache the simplex.
|
||||
simplex.WriteCache(ref cache);
|
||||
|
||||
// Apply radii if requested.
|
||||
if (input.UseRadii)
|
||||
{
|
||||
float rA = input.ProxyA.Radius;
|
||||
float rB = input.ProxyB.Radius;
|
||||
|
||||
if (output.Distance > rA + rB && output.Distance > Settings.Epsilon)
|
||||
{
|
||||
// Shapes are still no overlapped.
|
||||
// Move the witness points to the outer surface.
|
||||
output.Distance -= rA + rB;
|
||||
Vector2 normal = output.PointB - output.PointA;
|
||||
normal.Normalize();
|
||||
output.PointA += rA * normal;
|
||||
output.PointB -= rB * normal;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Shapes are overlapped when radii are considered.
|
||||
// Move the witness points to the middle.
|
||||
Vector2 p = 0.5f * (output.PointA + output.PointB);
|
||||
output.PointA = p;
|
||||
output.PointB = p;
|
||||
output.Distance = 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
654
axios/Collision/DynamicTree.cs
Normal file
654
axios/Collision/DynamicTree.cs
Normal file
@@ -0,0 +1,654 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using FarseerPhysics.Common;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision
|
||||
{
|
||||
/// <summary>
|
||||
/// A node in the dynamic tree. The client does not interact with this directly.
|
||||
/// </summary>
|
||||
internal struct DynamicTreeNode<T>
|
||||
{
|
||||
/// <summary>
|
||||
/// This is the fattened AABB.
|
||||
/// </summary>
|
||||
internal AABB AABB;
|
||||
|
||||
internal int Child1;
|
||||
internal int Child2;
|
||||
|
||||
internal int LeafCount;
|
||||
internal int ParentOrNext;
|
||||
internal T UserData;
|
||||
|
||||
internal bool IsLeaf()
|
||||
{
|
||||
return Child1 == DynamicTree<T>.NullNode;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// A dynamic tree arranges data in a binary tree to accelerate
|
||||
/// queries such as volume queries and ray casts. Leafs are proxies
|
||||
/// with an AABB. In the tree we expand the proxy AABB by Settings.b2_fatAABBFactor
|
||||
/// so that the proxy AABB is bigger than the client object. This allows the client
|
||||
/// object to move by small amounts without triggering a tree update.
|
||||
///
|
||||
/// Nodes are pooled and relocatable, so we use node indices rather than pointers.
|
||||
/// </summary>
|
||||
public class DynamicTree<T>
|
||||
{
|
||||
internal const int NullNode = -1;
|
||||
private static Stack<int> _stack = new Stack<int>(256);
|
||||
private int _freeList;
|
||||
private int _insertionCount;
|
||||
private int _nodeCapacity;
|
||||
private int _nodeCount;
|
||||
private DynamicTreeNode<T>[] _nodes;
|
||||
|
||||
/// <summary>
|
||||
/// This is used incrementally traverse the tree for re-balancing.
|
||||
/// </summary>
|
||||
private int _path;
|
||||
|
||||
private int _root;
|
||||
|
||||
/// <summary>
|
||||
/// Constructing the tree initializes the node pool.
|
||||
/// </summary>
|
||||
public DynamicTree()
|
||||
{
|
||||
_root = NullNode;
|
||||
|
||||
_nodeCapacity = 16;
|
||||
_nodes = new DynamicTreeNode<T>[_nodeCapacity];
|
||||
|
||||
// Build a linked list for the free list.
|
||||
for (int i = 0; i < _nodeCapacity - 1; ++i)
|
||||
{
|
||||
_nodes[i].ParentOrNext = i + 1;
|
||||
}
|
||||
_nodes[_nodeCapacity - 1].ParentOrNext = NullNode;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Create a proxy in the tree as a leaf node. We return the index
|
||||
/// of the node instead of a pointer so that we can grow
|
||||
/// the node pool.
|
||||
/// /// </summary>
|
||||
/// <param name="aabb">The aabb.</param>
|
||||
/// <param name="userData">The user data.</param>
|
||||
/// <returns>Index of the created proxy</returns>
|
||||
public int AddProxy(ref AABB aabb, T userData)
|
||||
{
|
||||
int proxyId = AllocateNode();
|
||||
|
||||
// Fatten the aabb.
|
||||
Vector2 r = new Vector2(Settings.AABBExtension, Settings.AABBExtension);
|
||||
_nodes[proxyId].AABB.LowerBound = aabb.LowerBound - r;
|
||||
_nodes[proxyId].AABB.UpperBound = aabb.UpperBound + r;
|
||||
_nodes[proxyId].UserData = userData;
|
||||
_nodes[proxyId].LeafCount = 1;
|
||||
|
||||
InsertLeaf(proxyId);
|
||||
|
||||
return proxyId;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Destroy a proxy. This asserts if the id is invalid.
|
||||
/// </summary>
|
||||
/// <param name="proxyId">The proxy id.</param>
|
||||
public void RemoveProxy(int proxyId)
|
||||
{
|
||||
Debug.Assert(0 <= proxyId && proxyId < _nodeCapacity);
|
||||
Debug.Assert(_nodes[proxyId].IsLeaf());
|
||||
|
||||
RemoveLeaf(proxyId);
|
||||
FreeNode(proxyId);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB,
|
||||
/// then the proxy is removed from the tree and re-inserted. Otherwise
|
||||
/// the function returns immediately.
|
||||
/// </summary>
|
||||
/// <param name="proxyId">The proxy id.</param>
|
||||
/// <param name="aabb">The aabb.</param>
|
||||
/// <param name="displacement">The displacement.</param>
|
||||
/// <returns>true if the proxy was re-inserted.</returns>
|
||||
public bool MoveProxy(int proxyId, ref AABB aabb, Vector2 displacement)
|
||||
{
|
||||
Debug.Assert(0 <= proxyId && proxyId < _nodeCapacity);
|
||||
|
||||
Debug.Assert(_nodes[proxyId].IsLeaf());
|
||||
|
||||
if (_nodes[proxyId].AABB.Contains(ref aabb))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
RemoveLeaf(proxyId);
|
||||
|
||||
// Extend AABB.
|
||||
AABB b = aabb;
|
||||
Vector2 r = new Vector2(Settings.AABBExtension, Settings.AABBExtension);
|
||||
b.LowerBound = b.LowerBound - r;
|
||||
b.UpperBound = b.UpperBound + r;
|
||||
|
||||
// Predict AABB displacement.
|
||||
Vector2 d = Settings.AABBMultiplier * displacement;
|
||||
|
||||
if (d.X < 0.0f)
|
||||
{
|
||||
b.LowerBound.X += d.X;
|
||||
}
|
||||
else
|
||||
{
|
||||
b.UpperBound.X += d.X;
|
||||
}
|
||||
|
||||
if (d.Y < 0.0f)
|
||||
{
|
||||
b.LowerBound.Y += d.Y;
|
||||
}
|
||||
else
|
||||
{
|
||||
b.UpperBound.Y += d.Y;
|
||||
}
|
||||
|
||||
_nodes[proxyId].AABB = b;
|
||||
|
||||
InsertLeaf(proxyId);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Perform some iterations to re-balance the tree.
|
||||
/// </summary>
|
||||
/// <param name="iterations">The iterations.</param>
|
||||
public void Rebalance(int iterations)
|
||||
{
|
||||
if (_root == NullNode)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Rebalance the tree by removing and re-inserting leaves.
|
||||
for (int i = 0; i < iterations; ++i)
|
||||
{
|
||||
int node = _root;
|
||||
|
||||
int bit = 0;
|
||||
while (_nodes[node].IsLeaf() == false)
|
||||
{
|
||||
// Child selector based on a bit in the path
|
||||
int selector = (_path >> bit) & 1;
|
||||
|
||||
// Select the child nod
|
||||
node = (selector == 0) ? _nodes[node].Child1 : _nodes[node].Child2;
|
||||
|
||||
// Keep bit between 0 and 31 because _path has 32 bits
|
||||
// bit = (bit + 1) % 31
|
||||
bit = (bit + 1) & 0x1F;
|
||||
}
|
||||
++_path;
|
||||
|
||||
RemoveLeaf(node);
|
||||
InsertLeaf(node);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get proxy user data.
|
||||
/// </summary>
|
||||
/// <typeparam name="T"></typeparam>
|
||||
/// <param name="proxyId">The proxy id.</param>
|
||||
/// <returns>the proxy user data or 0 if the id is invalid.</returns>
|
||||
public T GetUserData(int proxyId)
|
||||
{
|
||||
Debug.Assert(0 <= proxyId && proxyId < _nodeCapacity);
|
||||
return _nodes[proxyId].UserData;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get the fat AABB for a proxy.
|
||||
/// </summary>
|
||||
/// <param name="proxyId">The proxy id.</param>
|
||||
/// <param name="fatAABB">The fat AABB.</param>
|
||||
public void GetFatAABB(int proxyId, out AABB fatAABB)
|
||||
{
|
||||
Debug.Assert(0 <= proxyId && proxyId < _nodeCapacity);
|
||||
fatAABB = _nodes[proxyId].AABB;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Compute the height of the binary tree in O(N) time. Should not be
|
||||
/// called often.
|
||||
/// </summary>
|
||||
/// <returns></returns>
|
||||
public int ComputeHeight()
|
||||
{
|
||||
return ComputeHeight(_root);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Query an AABB for overlapping proxies. The callback class
|
||||
/// is called for each proxy that overlaps the supplied AABB.
|
||||
/// </summary>
|
||||
/// <param name="callback">The callback.</param>
|
||||
/// <param name="aabb">The aabb.</param>
|
||||
public void Query(Func<int, bool> callback, ref AABB aabb)
|
||||
{
|
||||
_stack.Clear();
|
||||
_stack.Push(_root);
|
||||
|
||||
while (_stack.Count > 0)
|
||||
{
|
||||
int nodeId = _stack.Pop();
|
||||
if (nodeId == NullNode)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
DynamicTreeNode<T> node = _nodes[nodeId];
|
||||
|
||||
if (AABB.TestOverlap(ref node.AABB, ref aabb))
|
||||
{
|
||||
if (node.IsLeaf())
|
||||
{
|
||||
bool proceed = callback(nodeId);
|
||||
if (proceed == false)
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
_stack.Push(node.Child1);
|
||||
_stack.Push(node.Child2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Ray-cast against the proxies in the tree. This relies on the callback
|
||||
/// to perform a exact ray-cast in the case were the proxy contains a Shape.
|
||||
/// The callback also performs the any collision filtering. This has performance
|
||||
/// roughly equal to k * log(n), where k is the number of collisions and n is the
|
||||
/// number of proxies in the tree.
|
||||
/// </summary>
|
||||
/// <param name="callback">A callback class that is called for each proxy that is hit by the ray.</param>
|
||||
/// <param name="input">The ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).</param>
|
||||
public void RayCast(Func<RayCastInput, int, float> callback, ref RayCastInput input)
|
||||
{
|
||||
Vector2 p1 = input.Point1;
|
||||
Vector2 p2 = input.Point2;
|
||||
Vector2 r = p2 - p1;
|
||||
Debug.Assert(r.LengthSquared() > 0.0f);
|
||||
r.Normalize();
|
||||
|
||||
// v is perpendicular to the segment.
|
||||
Vector2 absV = MathUtils.Abs(new Vector2(-r.Y, r.X));
|
||||
|
||||
// Separating axis for segment (Gino, p80).
|
||||
// |dot(v, p1 - c)| > dot(|v|, h)
|
||||
|
||||
float maxFraction = input.MaxFraction;
|
||||
|
||||
// Build a bounding box for the segment.
|
||||
AABB segmentAABB = new AABB();
|
||||
{
|
||||
Vector2 t = p1 + maxFraction * (p2 - p1);
|
||||
Vector2.Min(ref p1, ref t, out segmentAABB.LowerBound);
|
||||
Vector2.Max(ref p1, ref t, out segmentAABB.UpperBound);
|
||||
}
|
||||
|
||||
_stack.Clear();
|
||||
_stack.Push(_root);
|
||||
|
||||
while (_stack.Count > 0)
|
||||
{
|
||||
int nodeId = _stack.Pop();
|
||||
if (nodeId == NullNode)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
DynamicTreeNode<T> node = _nodes[nodeId];
|
||||
|
||||
if (AABB.TestOverlap(ref node.AABB, ref segmentAABB) == false)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Separating axis for segment (Gino, p80).
|
||||
// |dot(v, p1 - c)| > dot(|v|, h)
|
||||
Vector2 c = node.AABB.Center;
|
||||
Vector2 h = node.AABB.Extents;
|
||||
float separation = Math.Abs(Vector2.Dot(new Vector2(-r.Y, r.X), p1 - c)) - Vector2.Dot(absV, h);
|
||||
if (separation > 0.0f)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node.IsLeaf())
|
||||
{
|
||||
RayCastInput subInput;
|
||||
subInput.Point1 = input.Point1;
|
||||
subInput.Point2 = input.Point2;
|
||||
subInput.MaxFraction = maxFraction;
|
||||
|
||||
float value = callback(subInput, nodeId);
|
||||
|
||||
if (value == 0.0f)
|
||||
{
|
||||
// the client has terminated the raycast.
|
||||
return;
|
||||
}
|
||||
|
||||
if (value > 0.0f)
|
||||
{
|
||||
// Update segment bounding box.
|
||||
maxFraction = value;
|
||||
Vector2 t = p1 + maxFraction * (p2 - p1);
|
||||
segmentAABB.LowerBound = Vector2.Min(p1, t);
|
||||
segmentAABB.UpperBound = Vector2.Max(p1, t);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
_stack.Push(node.Child1);
|
||||
_stack.Push(node.Child2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private int CountLeaves(int nodeId)
|
||||
{
|
||||
if (nodeId == NullNode)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
Debug.Assert(0 <= nodeId && nodeId < _nodeCapacity);
|
||||
DynamicTreeNode<T> node = _nodes[nodeId];
|
||||
|
||||
if (node.IsLeaf())
|
||||
{
|
||||
Debug.Assert(node.LeafCount == 1);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int count1 = CountLeaves(node.Child1);
|
||||
int count2 = CountLeaves(node.Child2);
|
||||
int count = count1 + count2;
|
||||
Debug.Assert(count == node.LeafCount);
|
||||
return count;
|
||||
}
|
||||
|
||||
private void Validate()
|
||||
{
|
||||
CountLeaves(_root);
|
||||
}
|
||||
|
||||
private int AllocateNode()
|
||||
{
|
||||
// Expand the node pool as needed.
|
||||
if (_freeList == NullNode)
|
||||
{
|
||||
Debug.Assert(_nodeCount == _nodeCapacity);
|
||||
|
||||
// The free list is empty. Rebuild a bigger pool.
|
||||
DynamicTreeNode<T>[] oldNodes = _nodes;
|
||||
_nodeCapacity *= 2;
|
||||
_nodes = new DynamicTreeNode<T>[_nodeCapacity];
|
||||
Array.Copy(oldNodes, _nodes, _nodeCount);
|
||||
|
||||
// Build a linked list for the free list. The parent
|
||||
// pointer becomes the "next" pointer.
|
||||
for (int i = _nodeCount; i < _nodeCapacity - 1; ++i)
|
||||
{
|
||||
_nodes[i].ParentOrNext = i + 1;
|
||||
}
|
||||
_nodes[_nodeCapacity - 1].ParentOrNext = NullNode;
|
||||
_freeList = _nodeCount;
|
||||
}
|
||||
|
||||
// Peel a node off the free list.
|
||||
int nodeId = _freeList;
|
||||
_freeList = _nodes[nodeId].ParentOrNext;
|
||||
_nodes[nodeId].ParentOrNext = NullNode;
|
||||
_nodes[nodeId].Child1 = NullNode;
|
||||
_nodes[nodeId].Child2 = NullNode;
|
||||
_nodes[nodeId].LeafCount = 0;
|
||||
++_nodeCount;
|
||||
return nodeId;
|
||||
}
|
||||
|
||||
private void FreeNode(int nodeId)
|
||||
{
|
||||
Debug.Assert(0 <= nodeId && nodeId < _nodeCapacity);
|
||||
Debug.Assert(0 < _nodeCount);
|
||||
_nodes[nodeId].ParentOrNext = _freeList;
|
||||
_freeList = nodeId;
|
||||
--_nodeCount;
|
||||
}
|
||||
|
||||
private void InsertLeaf(int leaf)
|
||||
{
|
||||
++_insertionCount;
|
||||
|
||||
if (_root == NullNode)
|
||||
{
|
||||
_root = leaf;
|
||||
_nodes[_root].ParentOrNext = NullNode;
|
||||
return;
|
||||
}
|
||||
|
||||
// Find the best sibling for this node
|
||||
AABB leafAABB = _nodes[leaf].AABB;
|
||||
int sibling = _root;
|
||||
while (_nodes[sibling].IsLeaf() == false)
|
||||
{
|
||||
int child1 = _nodes[sibling].Child1;
|
||||
int child2 = _nodes[sibling].Child2;
|
||||
|
||||
// Expand the node's AABB.
|
||||
_nodes[sibling].AABB.Combine(ref leafAABB);
|
||||
_nodes[sibling].LeafCount += 1;
|
||||
|
||||
float siblingArea = _nodes[sibling].AABB.Perimeter;
|
||||
AABB parentAABB = new AABB();
|
||||
parentAABB.Combine(ref _nodes[sibling].AABB, ref leafAABB);
|
||||
float parentArea = parentAABB.Perimeter;
|
||||
float cost1 = 2.0f * parentArea;
|
||||
|
||||
float inheritanceCost = 2.0f * (parentArea - siblingArea);
|
||||
|
||||
float cost2;
|
||||
if (_nodes[child1].IsLeaf())
|
||||
{
|
||||
AABB aabb = new AABB();
|
||||
aabb.Combine(ref leafAABB, ref _nodes[child1].AABB);
|
||||
cost2 = aabb.Perimeter + inheritanceCost;
|
||||
}
|
||||
else
|
||||
{
|
||||
AABB aabb = new AABB();
|
||||
aabb.Combine(ref leafAABB, ref _nodes[child1].AABB);
|
||||
float oldArea = _nodes[child1].AABB.Perimeter;
|
||||
float newArea = aabb.Perimeter;
|
||||
cost2 = (newArea - oldArea) + inheritanceCost;
|
||||
}
|
||||
|
||||
float cost3;
|
||||
if (_nodes[child2].IsLeaf())
|
||||
{
|
||||
AABB aabb = new AABB();
|
||||
aabb.Combine(ref leafAABB, ref _nodes[child2].AABB);
|
||||
cost3 = aabb.Perimeter + inheritanceCost;
|
||||
}
|
||||
else
|
||||
{
|
||||
AABB aabb = new AABB();
|
||||
aabb.Combine(ref leafAABB, ref _nodes[child2].AABB);
|
||||
float oldArea = _nodes[child2].AABB.Perimeter;
|
||||
float newArea = aabb.Perimeter;
|
||||
cost3 = newArea - oldArea + inheritanceCost;
|
||||
}
|
||||
|
||||
// Descend according to the minimum cost.
|
||||
if (cost1 < cost2 && cost1 < cost3)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// Expand the node's AABB to account for the new leaf.
|
||||
_nodes[sibling].AABB.Combine(ref leafAABB);
|
||||
|
||||
// Descend
|
||||
if (cost2 < cost3)
|
||||
{
|
||||
sibling = child1;
|
||||
}
|
||||
else
|
||||
{
|
||||
sibling = child2;
|
||||
}
|
||||
}
|
||||
|
||||
// Create a new parent for the siblings.
|
||||
int oldParent = _nodes[sibling].ParentOrNext;
|
||||
int newParent = AllocateNode();
|
||||
_nodes[newParent].ParentOrNext = oldParent;
|
||||
_nodes[newParent].UserData = default(T);
|
||||
_nodes[newParent].AABB.Combine(ref leafAABB, ref _nodes[sibling].AABB);
|
||||
_nodes[newParent].LeafCount = _nodes[sibling].LeafCount + 1;
|
||||
|
||||
if (oldParent != NullNode)
|
||||
{
|
||||
// The sibling was not the root.
|
||||
if (_nodes[oldParent].Child1 == sibling)
|
||||
{
|
||||
_nodes[oldParent].Child1 = newParent;
|
||||
}
|
||||
else
|
||||
{
|
||||
_nodes[oldParent].Child2 = newParent;
|
||||
}
|
||||
|
||||
_nodes[newParent].Child1 = sibling;
|
||||
_nodes[newParent].Child2 = leaf;
|
||||
_nodes[sibling].ParentOrNext = newParent;
|
||||
_nodes[leaf].ParentOrNext = newParent;
|
||||
}
|
||||
else
|
||||
{
|
||||
// The sibling was the root.
|
||||
_nodes[newParent].Child1 = sibling;
|
||||
_nodes[newParent].Child2 = leaf;
|
||||
_nodes[sibling].ParentOrNext = newParent;
|
||||
_nodes[leaf].ParentOrNext = newParent;
|
||||
_root = newParent;
|
||||
}
|
||||
}
|
||||
|
||||
private void RemoveLeaf(int leaf)
|
||||
{
|
||||
if (leaf == _root)
|
||||
{
|
||||
_root = NullNode;
|
||||
return;
|
||||
}
|
||||
|
||||
int parent = _nodes[leaf].ParentOrNext;
|
||||
int grandParent = _nodes[parent].ParentOrNext;
|
||||
int sibling;
|
||||
if (_nodes[parent].Child1 == leaf)
|
||||
{
|
||||
sibling = _nodes[parent].Child2;
|
||||
}
|
||||
else
|
||||
{
|
||||
sibling = _nodes[parent].Child1;
|
||||
}
|
||||
|
||||
if (grandParent != NullNode)
|
||||
{
|
||||
// Destroy parent and connect sibling to grandParent.
|
||||
if (_nodes[grandParent].Child1 == parent)
|
||||
{
|
||||
_nodes[grandParent].Child1 = sibling;
|
||||
}
|
||||
else
|
||||
{
|
||||
_nodes[grandParent].Child2 = sibling;
|
||||
}
|
||||
_nodes[sibling].ParentOrNext = grandParent;
|
||||
FreeNode(parent);
|
||||
|
||||
// Adjust ancestor bounds.
|
||||
parent = grandParent;
|
||||
while (parent != NullNode)
|
||||
{
|
||||
_nodes[parent].AABB.Combine(ref _nodes[_nodes[parent].Child1].AABB,
|
||||
ref _nodes[_nodes[parent].Child2].AABB);
|
||||
|
||||
Debug.Assert(_nodes[parent].LeafCount > 0);
|
||||
_nodes[parent].LeafCount -= 1;
|
||||
|
||||
parent = _nodes[parent].ParentOrNext;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
_root = sibling;
|
||||
_nodes[sibling].ParentOrNext = NullNode;
|
||||
FreeNode(parent);
|
||||
}
|
||||
}
|
||||
|
||||
private int ComputeHeight(int nodeId)
|
||||
{
|
||||
if (nodeId == NullNode)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
Debug.Assert(0 <= nodeId && nodeId < _nodeCapacity);
|
||||
DynamicTreeNode<T> node = _nodes[nodeId];
|
||||
int height1 = ComputeHeight(node.Child1);
|
||||
int height2 = ComputeHeight(node.Child2);
|
||||
return 1 + Math.Max(height1, height2);
|
||||
}
|
||||
}
|
||||
}
|
324
axios/Collision/DynamicTreeBroadPhase.cs
Normal file
324
axios/Collision/DynamicTreeBroadPhase.cs
Normal file
@@ -0,0 +1,324 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using System;
|
||||
using FarseerPhysics.Dynamics;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision
|
||||
{
|
||||
internal struct Pair : IComparable<Pair>
|
||||
{
|
||||
public int ProxyIdA;
|
||||
public int ProxyIdB;
|
||||
|
||||
#region IComparable<Pair> Members
|
||||
|
||||
public int CompareTo(Pair other)
|
||||
{
|
||||
if (ProxyIdA < other.ProxyIdA)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
if (ProxyIdA == other.ProxyIdA)
|
||||
{
|
||||
if (ProxyIdB < other.ProxyIdB)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
if (ProxyIdB == other.ProxyIdB)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endregion
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// The broad-phase is used for computing pairs and performing volume queries and ray casts.
|
||||
/// This broad-phase does not persist pairs. Instead, this reports potentially new pairs.
|
||||
/// It is up to the client to consume the new pairs and to track subsequent overlap.
|
||||
/// </summary>
|
||||
public class DynamicTreeBroadPhase : IBroadPhase
|
||||
{
|
||||
private int[] _moveBuffer;
|
||||
private int _moveCapacity;
|
||||
private int _moveCount;
|
||||
|
||||
private Pair[] _pairBuffer;
|
||||
private int _pairCapacity;
|
||||
private int _pairCount;
|
||||
private int _proxyCount;
|
||||
private Func<int, bool> _queryCallback;
|
||||
private int _queryProxyId;
|
||||
private DynamicTree<FixtureProxy> _tree = new DynamicTree<FixtureProxy>();
|
||||
|
||||
public DynamicTreeBroadPhase()
|
||||
{
|
||||
_queryCallback = new Func<int, bool>(QueryCallback);
|
||||
|
||||
_pairCapacity = 16;
|
||||
_pairBuffer = new Pair[_pairCapacity];
|
||||
|
||||
_moveCapacity = 16;
|
||||
_moveBuffer = new int[_moveCapacity];
|
||||
}
|
||||
|
||||
#region IBroadPhase Members
|
||||
|
||||
/// <summary>
|
||||
/// Get the number of proxies.
|
||||
/// </summary>
|
||||
/// <value>The proxy count.</value>
|
||||
public int ProxyCount
|
||||
{
|
||||
get { return _proxyCount; }
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Create a proxy with an initial AABB. Pairs are not reported until
|
||||
/// UpdatePairs is called.
|
||||
/// </summary>
|
||||
/// <param name="aabb">The aabb.</param>
|
||||
/// <param name="proxy">The user data.</param>
|
||||
/// <returns></returns>
|
||||
public int AddProxy(ref FixtureProxy proxy)
|
||||
{
|
||||
int proxyId = _tree.AddProxy(ref proxy.AABB, proxy);
|
||||
++_proxyCount;
|
||||
BufferMove(proxyId);
|
||||
return proxyId;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Destroy a proxy. It is up to the client to remove any pairs.
|
||||
/// </summary>
|
||||
/// <param name="proxyId">The proxy id.</param>
|
||||
public void RemoveProxy(int proxyId)
|
||||
{
|
||||
UnBufferMove(proxyId);
|
||||
--_proxyCount;
|
||||
_tree.RemoveProxy(proxyId);
|
||||
}
|
||||
|
||||
public void MoveProxy(int proxyId, ref AABB aabb, Vector2 displacement)
|
||||
{
|
||||
bool buffer = _tree.MoveProxy(proxyId, ref aabb, displacement);
|
||||
if (buffer)
|
||||
{
|
||||
BufferMove(proxyId);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get the AABB for a proxy.
|
||||
/// </summary>
|
||||
/// <param name="proxyId">The proxy id.</param>
|
||||
/// <param name="aabb">The aabb.</param>
|
||||
public void GetFatAABB(int proxyId, out AABB aabb)
|
||||
{
|
||||
_tree.GetFatAABB(proxyId, out aabb);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get user data from a proxy. Returns null if the id is invalid.
|
||||
/// </summary>
|
||||
/// <param name="proxyId">The proxy id.</param>
|
||||
/// <returns></returns>
|
||||
public FixtureProxy GetProxy(int proxyId)
|
||||
{
|
||||
return _tree.GetUserData(proxyId);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Test overlap of fat AABBs.
|
||||
/// </summary>
|
||||
/// <param name="proxyIdA">The proxy id A.</param>
|
||||
/// <param name="proxyIdB">The proxy id B.</param>
|
||||
/// <returns></returns>
|
||||
public bool TestOverlap(int proxyIdA, int proxyIdB)
|
||||
{
|
||||
AABB aabbA, aabbB;
|
||||
_tree.GetFatAABB(proxyIdA, out aabbA);
|
||||
_tree.GetFatAABB(proxyIdB, out aabbB);
|
||||
return AABB.TestOverlap(ref aabbA, ref aabbB);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Update the pairs. This results in pair callbacks. This can only add pairs.
|
||||
/// </summary>
|
||||
/// <param name="callback">The callback.</param>
|
||||
public void UpdatePairs(BroadphaseDelegate callback)
|
||||
{
|
||||
// Reset pair buffer
|
||||
_pairCount = 0;
|
||||
|
||||
// Perform tree queries for all moving proxies.
|
||||
for (int j = 0; j < _moveCount; ++j)
|
||||
{
|
||||
_queryProxyId = _moveBuffer[j];
|
||||
if (_queryProxyId == -1)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// We have to query the tree with the fat AABB so that
|
||||
// we don't fail to create a pair that may touch later.
|
||||
AABB fatAABB;
|
||||
_tree.GetFatAABB(_queryProxyId, out fatAABB);
|
||||
|
||||
// Query tree, create pairs and add them pair buffer.
|
||||
_tree.Query(_queryCallback, ref fatAABB);
|
||||
}
|
||||
|
||||
// Reset move buffer
|
||||
_moveCount = 0;
|
||||
|
||||
// Sort the pair buffer to expose duplicates.
|
||||
Array.Sort(_pairBuffer, 0, _pairCount);
|
||||
|
||||
// Send the pairs back to the client.
|
||||
int i = 0;
|
||||
while (i < _pairCount)
|
||||
{
|
||||
Pair primaryPair = _pairBuffer[i];
|
||||
FixtureProxy userDataA = _tree.GetUserData(primaryPair.ProxyIdA);
|
||||
FixtureProxy userDataB = _tree.GetUserData(primaryPair.ProxyIdB);
|
||||
|
||||
callback(ref userDataA, ref userDataB);
|
||||
++i;
|
||||
|
||||
// Skip any duplicate pairs.
|
||||
while (i < _pairCount)
|
||||
{
|
||||
Pair pair = _pairBuffer[i];
|
||||
if (pair.ProxyIdA != primaryPair.ProxyIdA || pair.ProxyIdB != primaryPair.ProxyIdB)
|
||||
{
|
||||
break;
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
// Try to keep the tree balanced.
|
||||
_tree.Rebalance(4);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Query an AABB for overlapping proxies. The callback class
|
||||
/// is called for each proxy that overlaps the supplied AABB.
|
||||
/// </summary>
|
||||
/// <param name="callback">The callback.</param>
|
||||
/// <param name="aabb">The aabb.</param>
|
||||
public void Query(Func<int, bool> callback, ref AABB aabb)
|
||||
{
|
||||
_tree.Query(callback, ref aabb);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Ray-cast against the proxies in the tree. This relies on the callback
|
||||
/// to perform a exact ray-cast in the case were the proxy contains a shape.
|
||||
/// The callback also performs the any collision filtering. This has performance
|
||||
/// roughly equal to k * log(n), where k is the number of collisions and n is the
|
||||
/// number of proxies in the tree.
|
||||
/// </summary>
|
||||
/// <param name="callback">A callback class that is called for each proxy that is hit by the ray.</param>
|
||||
/// <param name="input">The ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).</param>
|
||||
public void RayCast(Func<RayCastInput, int, float> callback, ref RayCastInput input)
|
||||
{
|
||||
_tree.RayCast(callback, ref input);
|
||||
}
|
||||
|
||||
public void TouchProxy(int proxyId)
|
||||
{
|
||||
BufferMove(proxyId);
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
/// <summary>
|
||||
/// Compute the height of the embedded tree.
|
||||
/// </summary>
|
||||
/// <returns></returns>
|
||||
public int ComputeHeight()
|
||||
{
|
||||
return _tree.ComputeHeight();
|
||||
}
|
||||
|
||||
private void BufferMove(int proxyId)
|
||||
{
|
||||
if (_moveCount == _moveCapacity)
|
||||
{
|
||||
int[] oldBuffer = _moveBuffer;
|
||||
_moveCapacity *= 2;
|
||||
_moveBuffer = new int[_moveCapacity];
|
||||
Array.Copy(oldBuffer, _moveBuffer, _moveCount);
|
||||
}
|
||||
|
||||
_moveBuffer[_moveCount] = proxyId;
|
||||
++_moveCount;
|
||||
}
|
||||
|
||||
private void UnBufferMove(int proxyId)
|
||||
{
|
||||
for (int i = 0; i < _moveCount; ++i)
|
||||
{
|
||||
if (_moveBuffer[i] == proxyId)
|
||||
{
|
||||
_moveBuffer[i] = -1;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private bool QueryCallback(int proxyId)
|
||||
{
|
||||
// A proxy cannot form a pair with itself.
|
||||
if (proxyId == _queryProxyId)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
// Grow the pair buffer as needed.
|
||||
if (_pairCount == _pairCapacity)
|
||||
{
|
||||
Pair[] oldBuffer = _pairBuffer;
|
||||
_pairCapacity *= 2;
|
||||
_pairBuffer = new Pair[_pairCapacity];
|
||||
Array.Copy(oldBuffer, _pairBuffer, _pairCount);
|
||||
}
|
||||
|
||||
_pairBuffer[_pairCount].ProxyIdA = Math.Min(proxyId, _queryProxyId);
|
||||
_pairBuffer[_pairCount].ProxyIdB = Math.Max(proxyId, _queryProxyId);
|
||||
++_pairCount;
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
30
axios/Collision/IBroadPhase.cs
Normal file
30
axios/Collision/IBroadPhase.cs
Normal file
@@ -0,0 +1,30 @@
|
||||
using System;
|
||||
using FarseerPhysics.Dynamics;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision
|
||||
{
|
||||
public interface IBroadPhase
|
||||
{
|
||||
int ProxyCount { get; }
|
||||
void UpdatePairs(BroadphaseDelegate callback);
|
||||
|
||||
bool TestOverlap(int proxyIdA, int proxyIdB);
|
||||
|
||||
int AddProxy(ref FixtureProxy proxy);
|
||||
|
||||
void RemoveProxy(int proxyId);
|
||||
|
||||
void MoveProxy(int proxyId, ref AABB aabb, Vector2 displacement);
|
||||
|
||||
FixtureProxy GetProxy(int proxyId);
|
||||
|
||||
void TouchProxy(int proxyId);
|
||||
|
||||
void GetFatAABB(int proxyId, out AABB aabb);
|
||||
|
||||
void Query(Func<int, bool> callback, ref AABB aabb);
|
||||
|
||||
void RayCast(Func<RayCastInput, int, float> callback, ref RayCastInput input);
|
||||
}
|
||||
}
|
267
axios/Collision/QuadTree.cs
Normal file
267
axios/Collision/QuadTree.cs
Normal file
@@ -0,0 +1,267 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using FarseerPhysics.Collision;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
public class Element<T>
|
||||
{
|
||||
public QuadTree<T> Parent;
|
||||
public AABB Span;
|
||||
public T Value;
|
||||
|
||||
public Element(T value, AABB span)
|
||||
{
|
||||
Span = span;
|
||||
Value = value;
|
||||
Parent = null;
|
||||
}
|
||||
}
|
||||
|
||||
public class QuadTree<T>
|
||||
{
|
||||
public int MaxBucket;
|
||||
public int MaxDepth;
|
||||
public List<Element<T>> Nodes;
|
||||
public AABB Span;
|
||||
public QuadTree<T>[] SubTrees;
|
||||
|
||||
public QuadTree(AABB span, int maxbucket, int maxdepth)
|
||||
{
|
||||
Span = span;
|
||||
Nodes = new List<Element<T>>();
|
||||
|
||||
MaxBucket = maxbucket;
|
||||
MaxDepth = maxdepth;
|
||||
}
|
||||
|
||||
public bool IsPartitioned
|
||||
{
|
||||
get { return SubTrees != null; }
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// returns the quadrant of span that entirely contains test. if none, return 0.
|
||||
/// </summary>
|
||||
/// <param name="span"></param>
|
||||
/// <param name="test"></param>
|
||||
/// <returns></returns>
|
||||
private int Partition(AABB span, AABB test)
|
||||
{
|
||||
if (span.Q1.Contains(ref test)) return 1;
|
||||
if (span.Q2.Contains(ref test)) return 2;
|
||||
if (span.Q3.Contains(ref test)) return 3;
|
||||
if (span.Q4.Contains(ref test)) return 4;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
public void AddNode(Element<T> node)
|
||||
{
|
||||
if (!IsPartitioned)
|
||||
{
|
||||
if (Nodes.Count >= MaxBucket && MaxDepth > 0) //bin is full and can still subdivide
|
||||
{
|
||||
//
|
||||
//partition into quadrants and sort existing nodes amonst quads.
|
||||
//
|
||||
Nodes.Add(node); //treat new node just like other nodes for partitioning
|
||||
|
||||
SubTrees = new QuadTree<T>[4];
|
||||
SubTrees[0] = new QuadTree<T>(Span.Q1, MaxBucket, MaxDepth - 1);
|
||||
SubTrees[1] = new QuadTree<T>(Span.Q2, MaxBucket, MaxDepth - 1);
|
||||
SubTrees[2] = new QuadTree<T>(Span.Q3, MaxBucket, MaxDepth - 1);
|
||||
SubTrees[3] = new QuadTree<T>(Span.Q4, MaxBucket, MaxDepth - 1);
|
||||
|
||||
List<Element<T>> remNodes = new List<Element<T>>();
|
||||
//nodes that are not fully contained by any quadrant
|
||||
|
||||
foreach (Element<T> n in Nodes)
|
||||
{
|
||||
switch (Partition(Span, n.Span))
|
||||
{
|
||||
case 1: //quadrant 1
|
||||
SubTrees[0].AddNode(n);
|
||||
break;
|
||||
case 2:
|
||||
SubTrees[1].AddNode(n);
|
||||
break;
|
||||
case 3:
|
||||
SubTrees[2].AddNode(n);
|
||||
break;
|
||||
case 4:
|
||||
SubTrees[3].AddNode(n);
|
||||
break;
|
||||
default:
|
||||
n.Parent = this;
|
||||
remNodes.Add(n);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
Nodes = remNodes;
|
||||
}
|
||||
else
|
||||
{
|
||||
node.Parent = this;
|
||||
Nodes.Add(node);
|
||||
//if bin is not yet full or max depth has been reached, just add the node without subdividing
|
||||
}
|
||||
}
|
||||
else //we already have children nodes
|
||||
{
|
||||
//
|
||||
//add node to specific sub-tree
|
||||
//
|
||||
switch (Partition(Span, node.Span))
|
||||
{
|
||||
case 1: //quadrant 1
|
||||
SubTrees[0].AddNode(node);
|
||||
break;
|
||||
case 2:
|
||||
SubTrees[1].AddNode(node);
|
||||
break;
|
||||
case 3:
|
||||
SubTrees[2].AddNode(node);
|
||||
break;
|
||||
case 4:
|
||||
SubTrees[3].AddNode(node);
|
||||
break;
|
||||
default:
|
||||
node.Parent = this;
|
||||
Nodes.Add(node);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// tests if ray intersects AABB
|
||||
/// </summary>
|
||||
/// <param name="aabb"></param>
|
||||
/// <returns></returns>
|
||||
public static bool RayCastAABB(AABB aabb, Vector2 p1, Vector2 p2)
|
||||
{
|
||||
AABB segmentAABB = new AABB();
|
||||
{
|
||||
Vector2.Min(ref p1, ref p2, out segmentAABB.LowerBound);
|
||||
Vector2.Max(ref p1, ref p2, out segmentAABB.UpperBound);
|
||||
}
|
||||
if (!AABB.TestOverlap(aabb, segmentAABB)) return false;
|
||||
|
||||
Vector2 rayDir = p2 - p1;
|
||||
Vector2 rayPos = p1;
|
||||
|
||||
Vector2 norm = new Vector2(-rayDir.Y, rayDir.X); //normal to ray
|
||||
if (norm.Length() == 0.0)
|
||||
return true; //if ray is just a point, return true (iff point is within aabb, as tested earlier)
|
||||
norm.Normalize();
|
||||
|
||||
float dPos = Vector2.Dot(rayPos, norm);
|
||||
|
||||
Vector2[] verts = aabb.GetVertices();
|
||||
float d0 = Vector2.Dot(verts[0], norm) - dPos;
|
||||
for (int i = 1; i < 4; i++)
|
||||
{
|
||||
float d = Vector2.Dot(verts[i], norm) - dPos;
|
||||
if (Math.Sign(d) != Math.Sign(d0))
|
||||
//return true if the ray splits the vertices (ie: sign of dot products with normal are not all same)
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
public void QueryAABB(Func<Element<T>, bool> callback, ref AABB searchR)
|
||||
{
|
||||
Stack<QuadTree<T>> stack = new Stack<QuadTree<T>>();
|
||||
stack.Push(this);
|
||||
|
||||
while (stack.Count > 0)
|
||||
{
|
||||
QuadTree<T> qt = stack.Pop();
|
||||
if (!AABB.TestOverlap(ref searchR, ref qt.Span))
|
||||
continue;
|
||||
|
||||
foreach (Element<T> n in qt.Nodes)
|
||||
if (AABB.TestOverlap(ref searchR, ref n.Span))
|
||||
{
|
||||
if (!callback(n)) return;
|
||||
}
|
||||
|
||||
if (qt.IsPartitioned)
|
||||
foreach (QuadTree<T> st in qt.SubTrees)
|
||||
stack.Push(st);
|
||||
}
|
||||
}
|
||||
|
||||
public void RayCast(Func<RayCastInput, Element<T>, float> callback, ref RayCastInput input)
|
||||
{
|
||||
Stack<QuadTree<T>> stack = new Stack<QuadTree<T>>();
|
||||
stack.Push(this);
|
||||
|
||||
float maxFraction = input.MaxFraction;
|
||||
Vector2 p1 = input.Point1;
|
||||
Vector2 p2 = p1 + (input.Point2 - input.Point1) * maxFraction;
|
||||
|
||||
while (stack.Count > 0)
|
||||
{
|
||||
QuadTree<T> qt = stack.Pop();
|
||||
|
||||
if (!RayCastAABB(qt.Span, p1, p2))
|
||||
continue;
|
||||
|
||||
foreach (Element<T> n in qt.Nodes)
|
||||
{
|
||||
if (!RayCastAABB(n.Span, p1, p2))
|
||||
continue;
|
||||
|
||||
RayCastInput subInput;
|
||||
subInput.Point1 = input.Point1;
|
||||
subInput.Point2 = input.Point2;
|
||||
subInput.MaxFraction = maxFraction;
|
||||
|
||||
float value = callback(subInput, n);
|
||||
if (value == 0.0f)
|
||||
return; // the client has terminated the raycast.
|
||||
|
||||
if (value <= 0.0f)
|
||||
continue;
|
||||
|
||||
maxFraction = value;
|
||||
p2 = p1 + (input.Point2 - input.Point1) * maxFraction; //update segment endpoint
|
||||
}
|
||||
if (IsPartitioned)
|
||||
foreach (QuadTree<T> st in qt.SubTrees)
|
||||
stack.Push(st);
|
||||
}
|
||||
}
|
||||
|
||||
public void GetAllNodesR(ref List<Element<T>> nodes)
|
||||
{
|
||||
nodes.AddRange(Nodes);
|
||||
|
||||
if (IsPartitioned)
|
||||
foreach (QuadTree<T> st in SubTrees) st.GetAllNodesR(ref nodes);
|
||||
}
|
||||
|
||||
public void RemoveNode(Element<T> node)
|
||||
{
|
||||
node.Parent.Nodes.Remove(node);
|
||||
}
|
||||
|
||||
public void Reconstruct()
|
||||
{
|
||||
List<Element<T>> allNodes = new List<Element<T>>();
|
||||
GetAllNodesR(ref allNodes);
|
||||
|
||||
Clear();
|
||||
|
||||
allNodes.ForEach(AddNode);
|
||||
}
|
||||
|
||||
public void Clear()
|
||||
{
|
||||
Nodes.Clear();
|
||||
SubTrees = null;
|
||||
}
|
||||
}
|
249
axios/Collision/QuadTreeBroadPhase.cs
Normal file
249
axios/Collision/QuadTreeBroadPhase.cs
Normal file
@@ -0,0 +1,249 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using FarseerPhysics;
|
||||
using FarseerPhysics.Collision;
|
||||
using FarseerPhysics.Dynamics;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
public class QuadTreeBroadPhase : IBroadPhase
|
||||
{
|
||||
private const int TreeUpdateThresh = 10000;
|
||||
private int _currID;
|
||||
private Dictionary<int, Element<FixtureProxy>> _idRegister;
|
||||
private List<Element<FixtureProxy>> _moveBuffer;
|
||||
private List<Pair> _pairBuffer;
|
||||
private QuadTree<FixtureProxy> _quadTree;
|
||||
private int _treeMoveNum;
|
||||
|
||||
/// <summary>
|
||||
/// Creates a new quad tree broadphase with the specified span.
|
||||
/// </summary>
|
||||
/// <param name="span">the maximum span of the tree (world size)</param>
|
||||
public QuadTreeBroadPhase(AABB span)
|
||||
{
|
||||
_quadTree = new QuadTree<FixtureProxy>(span, 5, 10);
|
||||
_idRegister = new Dictionary<int, Element<FixtureProxy>>();
|
||||
_moveBuffer = new List<Element<FixtureProxy>>();
|
||||
_pairBuffer = new List<Pair>();
|
||||
}
|
||||
|
||||
#region IBroadPhase Members
|
||||
|
||||
///<summary>
|
||||
/// The number of proxies
|
||||
///</summary>
|
||||
public int ProxyCount
|
||||
{
|
||||
get { return _idRegister.Count; }
|
||||
}
|
||||
|
||||
public void GetFatAABB(int proxyID, out AABB aabb)
|
||||
{
|
||||
if (_idRegister.ContainsKey(proxyID))
|
||||
aabb = _idRegister[proxyID].Span;
|
||||
else
|
||||
throw new KeyNotFoundException("proxyID not found in register");
|
||||
}
|
||||
|
||||
public void UpdatePairs(BroadphaseDelegate callback)
|
||||
{
|
||||
_pairBuffer.Clear();
|
||||
foreach (Element<FixtureProxy> qtnode in _moveBuffer)
|
||||
{
|
||||
// Query tree, create pairs and add them pair buffer.
|
||||
Query(proxyID => PairBufferQueryCallback(proxyID, qtnode.Value.ProxyId), ref qtnode.Span);
|
||||
}
|
||||
_moveBuffer.Clear();
|
||||
|
||||
// Sort the pair buffer to expose duplicates.
|
||||
_pairBuffer.Sort();
|
||||
|
||||
// Send the pairs back to the client.
|
||||
int i = 0;
|
||||
while (i < _pairBuffer.Count)
|
||||
{
|
||||
Pair primaryPair = _pairBuffer[i];
|
||||
FixtureProxy userDataA = GetProxy(primaryPair.ProxyIdA);
|
||||
FixtureProxy userDataB = GetProxy(primaryPair.ProxyIdB);
|
||||
|
||||
callback(ref userDataA, ref userDataB);
|
||||
++i;
|
||||
|
||||
// Skip any duplicate pairs.
|
||||
while (i < _pairBuffer.Count && _pairBuffer[i].ProxyIdA == primaryPair.ProxyIdA &&
|
||||
_pairBuffer[i].ProxyIdB == primaryPair.ProxyIdB)
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Test overlap of fat AABBs.
|
||||
/// </summary>
|
||||
/// <param name="proxyIdA">The proxy id A.</param>
|
||||
/// <param name="proxyIdB">The proxy id B.</param>
|
||||
/// <returns></returns>
|
||||
public bool TestOverlap(int proxyIdA, int proxyIdB)
|
||||
{
|
||||
AABB aabb1;
|
||||
AABB aabb2;
|
||||
GetFatAABB(proxyIdA, out aabb1);
|
||||
GetFatAABB(proxyIdB, out aabb2);
|
||||
return AABB.TestOverlap(ref aabb1, ref aabb2);
|
||||
}
|
||||
|
||||
public int AddProxy(ref FixtureProxy proxy)
|
||||
{
|
||||
int proxyID = _currID++;
|
||||
proxy.ProxyId = proxyID;
|
||||
AABB aabb = Fatten(ref proxy.AABB);
|
||||
Element<FixtureProxy> qtnode = new Element<FixtureProxy>(proxy, aabb);
|
||||
|
||||
_idRegister.Add(proxyID, qtnode);
|
||||
_quadTree.AddNode(qtnode);
|
||||
|
||||
return proxyID;
|
||||
}
|
||||
|
||||
public void RemoveProxy(int proxyId)
|
||||
{
|
||||
if (_idRegister.ContainsKey(proxyId))
|
||||
{
|
||||
Element<FixtureProxy> qtnode = _idRegister[proxyId];
|
||||
UnbufferMove(qtnode);
|
||||
_idRegister.Remove(proxyId);
|
||||
_quadTree.RemoveNode(qtnode);
|
||||
}
|
||||
else
|
||||
throw new KeyNotFoundException("proxyID not found in register");
|
||||
}
|
||||
|
||||
public void MoveProxy(int proxyId, ref AABB aabb, Vector2 displacement)
|
||||
{
|
||||
AABB fatAABB;
|
||||
GetFatAABB(proxyId, out fatAABB);
|
||||
|
||||
//exit if movement is within fat aabb
|
||||
if (fatAABB.Contains(ref aabb))
|
||||
return;
|
||||
|
||||
// Extend AABB.
|
||||
AABB b = aabb;
|
||||
Vector2 r = new Vector2(Settings.AABBExtension, Settings.AABBExtension);
|
||||
b.LowerBound = b.LowerBound - r;
|
||||
b.UpperBound = b.UpperBound + r;
|
||||
|
||||
// Predict AABB displacement.
|
||||
Vector2 d = Settings.AABBMultiplier * displacement;
|
||||
|
||||
if (d.X < 0.0f)
|
||||
b.LowerBound.X += d.X;
|
||||
else
|
||||
b.UpperBound.X += d.X;
|
||||
|
||||
if (d.Y < 0.0f)
|
||||
b.LowerBound.Y += d.Y;
|
||||
else
|
||||
b.UpperBound.Y += d.Y;
|
||||
|
||||
|
||||
Element<FixtureProxy> qtnode = _idRegister[proxyId];
|
||||
qtnode.Value.AABB = b; //not neccesary for QTree, but might be accessed externally
|
||||
qtnode.Span = b;
|
||||
|
||||
ReinsertNode(qtnode);
|
||||
|
||||
BufferMove(qtnode);
|
||||
}
|
||||
|
||||
public FixtureProxy GetProxy(int proxyId)
|
||||
{
|
||||
if (_idRegister.ContainsKey(proxyId))
|
||||
return _idRegister[proxyId].Value;
|
||||
else
|
||||
throw new KeyNotFoundException("proxyID not found in register");
|
||||
}
|
||||
|
||||
public void TouchProxy(int proxyId)
|
||||
{
|
||||
if (_idRegister.ContainsKey(proxyId))
|
||||
BufferMove(_idRegister[proxyId]);
|
||||
else
|
||||
throw new KeyNotFoundException("proxyID not found in register");
|
||||
}
|
||||
|
||||
public void Query(Func<int, bool> callback, ref AABB query)
|
||||
{
|
||||
_quadTree.QueryAABB(TransformPredicate(callback), ref query);
|
||||
}
|
||||
|
||||
public void RayCast(Func<RayCastInput, int, float> callback, ref RayCastInput input)
|
||||
{
|
||||
_quadTree.RayCast(TransformRayCallback(callback), ref input);
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
private AABB Fatten(ref AABB aabb)
|
||||
{
|
||||
Vector2 r = new Vector2(Settings.AABBExtension, Settings.AABBExtension);
|
||||
return new AABB(aabb.LowerBound - r, aabb.UpperBound + r);
|
||||
}
|
||||
|
||||
private Func<Element<FixtureProxy>, bool> TransformPredicate(Func<int, bool> idPredicate)
|
||||
{
|
||||
Func<Element<FixtureProxy>, bool> qtPred = qtnode => idPredicate(qtnode.Value.ProxyId);
|
||||
return qtPred;
|
||||
}
|
||||
|
||||
private Func<RayCastInput, Element<FixtureProxy>, float> TransformRayCallback(
|
||||
Func<RayCastInput, int, float> callback)
|
||||
{
|
||||
Func<RayCastInput, Element<FixtureProxy>, float> newCallback =
|
||||
(input, qtnode) => callback(input, qtnode.Value.ProxyId);
|
||||
return newCallback;
|
||||
}
|
||||
|
||||
private bool PairBufferQueryCallback(int proxyID, int baseID)
|
||||
{
|
||||
// A proxy cannot form a pair with itself.
|
||||
if (proxyID == baseID)
|
||||
return true;
|
||||
|
||||
Pair p = new Pair();
|
||||
p.ProxyIdA = Math.Min(proxyID, baseID);
|
||||
p.ProxyIdB = Math.Max(proxyID, baseID);
|
||||
_pairBuffer.Add(p);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
private void ReconstructTree()
|
||||
{
|
||||
//this is faster than _quadTree.Reconstruct(), since the quadtree method runs a recusive query to find all nodes.
|
||||
_quadTree.Clear();
|
||||
foreach (Element<FixtureProxy> elem in _idRegister.Values)
|
||||
_quadTree.AddNode(elem);
|
||||
}
|
||||
|
||||
private void ReinsertNode(Element<FixtureProxy> qtnode)
|
||||
{
|
||||
_quadTree.RemoveNode(qtnode);
|
||||
_quadTree.AddNode(qtnode);
|
||||
|
||||
if (++_treeMoveNum > TreeUpdateThresh)
|
||||
{
|
||||
ReconstructTree();
|
||||
_treeMoveNum = 0;
|
||||
}
|
||||
}
|
||||
|
||||
private void BufferMove(Element<FixtureProxy> proxy)
|
||||
{
|
||||
_moveBuffer.Add(proxy);
|
||||
}
|
||||
|
||||
private void UnbufferMove(Element<FixtureProxy> proxy)
|
||||
{
|
||||
_moveBuffer.Remove(proxy);
|
||||
}
|
||||
}
|
207
axios/Collision/Shapes/CircleShape.cs
Normal file
207
axios/Collision/Shapes/CircleShape.cs
Normal file
@@ -0,0 +1,207 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using System;
|
||||
using FarseerPhysics.Common;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision.Shapes
|
||||
{
|
||||
public class CircleShape : Shape
|
||||
{
|
||||
internal Vector2 _position;
|
||||
|
||||
public CircleShape(float radius, float density)
|
||||
: base(density)
|
||||
{
|
||||
ShapeType = ShapeType.Circle;
|
||||
_radius = radius;
|
||||
_position = Vector2.Zero;
|
||||
ComputeProperties();
|
||||
}
|
||||
|
||||
internal CircleShape()
|
||||
: base(0)
|
||||
{
|
||||
ShapeType = ShapeType.Circle;
|
||||
_radius = 0.0f;
|
||||
_position = Vector2.Zero;
|
||||
}
|
||||
|
||||
public override int ChildCount
|
||||
{
|
||||
get { return 1; }
|
||||
}
|
||||
|
||||
public Vector2 Position
|
||||
{
|
||||
get { return _position; }
|
||||
set
|
||||
{
|
||||
_position = value;
|
||||
ComputeProperties();
|
||||
}
|
||||
}
|
||||
|
||||
public override Shape Clone()
|
||||
{
|
||||
CircleShape shape = new CircleShape();
|
||||
shape._radius = Radius;
|
||||
shape._density = _density;
|
||||
shape._position = _position;
|
||||
shape.ShapeType = ShapeType;
|
||||
shape.MassData = MassData;
|
||||
return shape;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Test a point for containment in this shape. This only works for convex shapes.
|
||||
/// </summary>
|
||||
/// <param name="transform">The shape world transform.</param>
|
||||
/// <param name="point">a point in world coordinates.</param>
|
||||
/// <returns>True if the point is inside the shape</returns>
|
||||
public override bool TestPoint(ref Transform transform, ref Vector2 point)
|
||||
{
|
||||
Vector2 center = transform.Position + MathUtils.Multiply(ref transform.R, Position);
|
||||
Vector2 d = point - center;
|
||||
return Vector2.Dot(d, d) <= Radius * Radius;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Cast a ray against a child shape.
|
||||
/// </summary>
|
||||
/// <param name="output">The ray-cast results.</param>
|
||||
/// <param name="input">The ray-cast input parameters.</param>
|
||||
/// <param name="transform">The transform to be applied to the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
/// <returns>True if the ray-cast hits the shape</returns>
|
||||
public override bool RayCast(out RayCastOutput output, ref RayCastInput input, ref Transform transform,
|
||||
int childIndex)
|
||||
{
|
||||
// Collision Detection in Interactive 3D Environments by Gino van den Bergen
|
||||
// From Section 3.1.2
|
||||
// x = s + a * r
|
||||
// norm(x) = radius
|
||||
|
||||
output = new RayCastOutput();
|
||||
|
||||
Vector2 position = transform.Position + MathUtils.Multiply(ref transform.R, Position);
|
||||
Vector2 s = input.Point1 - position;
|
||||
float b = Vector2.Dot(s, s) - Radius * Radius;
|
||||
|
||||
// Solve quadratic equation.
|
||||
Vector2 r = input.Point2 - input.Point1;
|
||||
float c = Vector2.Dot(s, r);
|
||||
float rr = Vector2.Dot(r, r);
|
||||
float sigma = c * c - rr * b;
|
||||
|
||||
// Check for negative discriminant and short segment.
|
||||
if (sigma < 0.0f || rr < Settings.Epsilon)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// Find the point of intersection of the line with the circle.
|
||||
float a = -(c + (float)Math.Sqrt(sigma));
|
||||
|
||||
// Is the intersection point on the segment?
|
||||
if (0.0f <= a && a <= input.MaxFraction * rr)
|
||||
{
|
||||
a /= rr;
|
||||
output.Fraction = a;
|
||||
Vector2 norm = (s + a * r);
|
||||
norm.Normalize();
|
||||
output.Normal = norm;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Given a transform, compute the associated axis aligned bounding box for a child shape.
|
||||
/// </summary>
|
||||
/// <param name="aabb">The aabb results.</param>
|
||||
/// <param name="transform">The world transform of the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
public override void ComputeAABB(out AABB aabb, ref Transform transform, int childIndex)
|
||||
{
|
||||
Vector2 p = transform.Position + MathUtils.Multiply(ref transform.R, Position);
|
||||
aabb.LowerBound = new Vector2(p.X - Radius, p.Y - Radius);
|
||||
aabb.UpperBound = new Vector2(p.X + Radius, p.Y + Radius);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Compute the mass properties of this shape using its dimensions and density.
|
||||
/// The inertia tensor is computed about the local origin, not the centroid.
|
||||
/// </summary>
|
||||
public override sealed void ComputeProperties()
|
||||
{
|
||||
float area = Settings.Pi * Radius * Radius;
|
||||
MassData.Area = area;
|
||||
MassData.Mass = Density * area;
|
||||
MassData.Centroid = Position;
|
||||
|
||||
// inertia about the local origin
|
||||
MassData.Inertia = MassData.Mass * (0.5f * Radius * Radius + Vector2.Dot(Position, Position));
|
||||
}
|
||||
|
||||
public bool CompareTo(CircleShape shape)
|
||||
{
|
||||
return (Radius == shape.Radius &&
|
||||
Position == shape.Position);
|
||||
}
|
||||
|
||||
public override float ComputeSubmergedArea(Vector2 normal, float offset, Transform xf, out Vector2 sc)
|
||||
{
|
||||
sc = Vector2.Zero;
|
||||
|
||||
Vector2 p = MathUtils.Multiply(ref xf, Position);
|
||||
float l = -(Vector2.Dot(normal, p) - offset);
|
||||
if (l < -Radius + Settings.Epsilon)
|
||||
{
|
||||
//Completely dry
|
||||
return 0;
|
||||
}
|
||||
if (l > Radius)
|
||||
{
|
||||
//Completely wet
|
||||
sc = p;
|
||||
return Settings.Pi * Radius * Radius;
|
||||
}
|
||||
|
||||
//Magic
|
||||
float r2 = Radius * Radius;
|
||||
float l2 = l * l;
|
||||
float area = r2 * (float)((Math.Asin(l / Radius) + Settings.Pi / 2) + l * Math.Sqrt(r2 - l2));
|
||||
float com = -2.0f / 3.0f * (float)Math.Pow(r2 - l2, 1.5f) / area;
|
||||
|
||||
sc.X = p.X + normal.X * com;
|
||||
sc.Y = p.Y + normal.Y * com;
|
||||
|
||||
return area;
|
||||
}
|
||||
}
|
||||
}
|
266
axios/Collision/Shapes/EdgeShape.cs
Normal file
266
axios/Collision/Shapes/EdgeShape.cs
Normal file
@@ -0,0 +1,266 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using FarseerPhysics.Common;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision.Shapes
|
||||
{
|
||||
/// <summary>
|
||||
/// A line segment (edge) Shape. These can be connected in chains or loops
|
||||
/// to other edge Shapes. The connectivity information is used to ensure
|
||||
/// correct contact normals.
|
||||
/// </summary>
|
||||
public class EdgeShape : Shape
|
||||
{
|
||||
public bool HasVertex0, HasVertex3;
|
||||
|
||||
/// <summary>
|
||||
/// Optional adjacent vertices. These are used for smooth collision.
|
||||
/// </summary>
|
||||
public Vector2 Vertex0;
|
||||
|
||||
/// <summary>
|
||||
/// Optional adjacent vertices. These are used for smooth collision.
|
||||
/// </summary>
|
||||
public Vector2 Vertex3;
|
||||
|
||||
/// <summary>
|
||||
/// Edge start vertex
|
||||
/// </summary>
|
||||
private Vector2 _vertex1;
|
||||
|
||||
/// <summary>
|
||||
/// Edge end vertex
|
||||
/// </summary>
|
||||
private Vector2 _vertex2;
|
||||
|
||||
internal EdgeShape()
|
||||
: base(0)
|
||||
{
|
||||
ShapeType = ShapeType.Edge;
|
||||
_radius = Settings.PolygonRadius;
|
||||
}
|
||||
|
||||
public EdgeShape(Vector2 start, Vector2 end)
|
||||
: base(0)
|
||||
{
|
||||
ShapeType = ShapeType.Edge;
|
||||
_radius = Settings.PolygonRadius;
|
||||
Set(start, end);
|
||||
}
|
||||
|
||||
public override int ChildCount
|
||||
{
|
||||
get { return 1; }
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// These are the edge vertices
|
||||
/// </summary>
|
||||
public Vector2 Vertex1
|
||||
{
|
||||
get { return _vertex1; }
|
||||
set
|
||||
{
|
||||
_vertex1 = value;
|
||||
ComputeProperties();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// These are the edge vertices
|
||||
/// </summary>
|
||||
public Vector2 Vertex2
|
||||
{
|
||||
get { return _vertex2; }
|
||||
set
|
||||
{
|
||||
_vertex2 = value;
|
||||
ComputeProperties();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Set this as an isolated edge.
|
||||
/// </summary>
|
||||
/// <param name="start">The start.</param>
|
||||
/// <param name="end">The end.</param>
|
||||
public void Set(Vector2 start, Vector2 end)
|
||||
{
|
||||
_vertex1 = start;
|
||||
_vertex2 = end;
|
||||
HasVertex0 = false;
|
||||
HasVertex3 = false;
|
||||
|
||||
ComputeProperties();
|
||||
}
|
||||
|
||||
public override Shape Clone()
|
||||
{
|
||||
EdgeShape edge = new EdgeShape();
|
||||
edge._radius = _radius;
|
||||
edge._density = _density;
|
||||
edge.HasVertex0 = HasVertex0;
|
||||
edge.HasVertex3 = HasVertex3;
|
||||
edge.Vertex0 = Vertex0;
|
||||
edge._vertex1 = _vertex1;
|
||||
edge._vertex2 = _vertex2;
|
||||
edge.Vertex3 = Vertex3;
|
||||
edge.MassData = MassData;
|
||||
return edge;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Test a point for containment in this shape. This only works for convex shapes.
|
||||
/// </summary>
|
||||
/// <param name="transform">The shape world transform.</param>
|
||||
/// <param name="point">a point in world coordinates.</param>
|
||||
/// <returns>True if the point is inside the shape</returns>
|
||||
public override bool TestPoint(ref Transform transform, ref Vector2 point)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Cast a ray against a child shape.
|
||||
/// </summary>
|
||||
/// <param name="output">The ray-cast results.</param>
|
||||
/// <param name="input">The ray-cast input parameters.</param>
|
||||
/// <param name="transform">The transform to be applied to the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
/// <returns>True if the ray-cast hits the shape</returns>
|
||||
public override bool RayCast(out RayCastOutput output, ref RayCastInput input,
|
||||
ref Transform transform, int childIndex)
|
||||
{
|
||||
// p = p1 + t * d
|
||||
// v = v1 + s * e
|
||||
// p1 + t * d = v1 + s * e
|
||||
// s * e - t * d = p1 - v1
|
||||
|
||||
output = new RayCastOutput();
|
||||
|
||||
// Put the ray into the edge's frame of reference.
|
||||
Vector2 p1 = MathUtils.MultiplyT(ref transform.R, input.Point1 - transform.Position);
|
||||
Vector2 p2 = MathUtils.MultiplyT(ref transform.R, input.Point2 - transform.Position);
|
||||
Vector2 d = p2 - p1;
|
||||
|
||||
Vector2 v1 = _vertex1;
|
||||
Vector2 v2 = _vertex2;
|
||||
Vector2 e = v2 - v1;
|
||||
Vector2 normal = new Vector2(e.Y, -e.X);
|
||||
normal.Normalize();
|
||||
|
||||
// q = p1 + t * d
|
||||
// dot(normal, q - v1) = 0
|
||||
// dot(normal, p1 - v1) + t * dot(normal, d) = 0
|
||||
float numerator = Vector2.Dot(normal, v1 - p1);
|
||||
float denominator = Vector2.Dot(normal, d);
|
||||
|
||||
if (denominator == 0.0f)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
float t = numerator / denominator;
|
||||
if (t < 0.0f || 1.0f < t)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
Vector2 q = p1 + t * d;
|
||||
|
||||
// q = v1 + s * r
|
||||
// s = dot(q - v1, r) / dot(r, r)
|
||||
Vector2 r = v2 - v1;
|
||||
float rr = Vector2.Dot(r, r);
|
||||
if (rr == 0.0f)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
float s = Vector2.Dot(q - v1, r) / rr;
|
||||
if (s < 0.0f || 1.0f < s)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
output.Fraction = t;
|
||||
if (numerator > 0.0f)
|
||||
{
|
||||
output.Normal = -normal;
|
||||
}
|
||||
else
|
||||
{
|
||||
output.Normal = normal;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Given a transform, compute the associated axis aligned bounding box for a child shape.
|
||||
/// </summary>
|
||||
/// <param name="aabb">The aabb results.</param>
|
||||
/// <param name="transform">The world transform of the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
public override void ComputeAABB(out AABB aabb, ref Transform transform, int childIndex)
|
||||
{
|
||||
Vector2 v1 = MathUtils.Multiply(ref transform, _vertex1);
|
||||
Vector2 v2 = MathUtils.Multiply(ref transform, _vertex2);
|
||||
|
||||
Vector2 lower = Vector2.Min(v1, v2);
|
||||
Vector2 upper = Vector2.Max(v1, v2);
|
||||
|
||||
Vector2 r = new Vector2(Radius, Radius);
|
||||
aabb.LowerBound = lower - r;
|
||||
aabb.UpperBound = upper + r;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Compute the mass properties of this shape using its dimensions and density.
|
||||
/// The inertia tensor is computed about the local origin, not the centroid.
|
||||
/// </summary>
|
||||
public override void ComputeProperties()
|
||||
{
|
||||
MassData.Centroid = 0.5f * (_vertex1 + _vertex2);
|
||||
}
|
||||
|
||||
public override float ComputeSubmergedArea(Vector2 normal, float offset, Transform xf, out Vector2 sc)
|
||||
{
|
||||
sc = Vector2.Zero;
|
||||
return 0;
|
||||
}
|
||||
|
||||
public bool CompareTo(EdgeShape shape)
|
||||
{
|
||||
return (HasVertex0 == shape.HasVertex0 &&
|
||||
HasVertex3 == shape.HasVertex3 &&
|
||||
Vertex0 == shape.Vertex0 &&
|
||||
Vertex1 == shape.Vertex1 &&
|
||||
Vertex2 == shape.Vertex2 &&
|
||||
Vertex3 == shape.Vertex3);
|
||||
}
|
||||
}
|
||||
}
|
188
axios/Collision/Shapes/LoopShape.cs
Normal file
188
axios/Collision/Shapes/LoopShape.cs
Normal file
@@ -0,0 +1,188 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using System.Diagnostics;
|
||||
using FarseerPhysics.Common;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision.Shapes
|
||||
{
|
||||
/// <summary>
|
||||
/// A loop Shape is a free form sequence of line segments that form a circular list.
|
||||
/// The loop may cross upon itself, but this is not recommended for smooth collision.
|
||||
/// The loop has double sided collision, so you can use inside and outside collision.
|
||||
/// Therefore, you may use any winding order.
|
||||
/// </summary>
|
||||
public class LoopShape : Shape
|
||||
{
|
||||
private static EdgeShape _edgeShape = new EdgeShape();
|
||||
|
||||
/// <summary>
|
||||
/// The vertices. These are not owned/freed by the loop Shape.
|
||||
/// </summary>
|
||||
public Vertices Vertices;
|
||||
|
||||
private LoopShape()
|
||||
: base(0)
|
||||
{
|
||||
ShapeType = ShapeType.Loop;
|
||||
_radius = Settings.PolygonRadius;
|
||||
}
|
||||
|
||||
public LoopShape(Vertices vertices)
|
||||
: base(0)
|
||||
{
|
||||
ShapeType = ShapeType.Loop;
|
||||
_radius = Settings.PolygonRadius;
|
||||
|
||||
#pragma warning disable 162
|
||||
if (Settings.ConserveMemory)
|
||||
Vertices = vertices;
|
||||
else
|
||||
// Copy vertices.
|
||||
Vertices = new Vertices(vertices);
|
||||
#pragma warning restore 162
|
||||
}
|
||||
|
||||
public override int ChildCount
|
||||
{
|
||||
get { return Vertices.Count; }
|
||||
}
|
||||
|
||||
public override Shape Clone()
|
||||
{
|
||||
LoopShape loop = new LoopShape();
|
||||
loop._density = _density;
|
||||
loop._radius = _radius;
|
||||
loop.Vertices = Vertices;
|
||||
loop.MassData = MassData;
|
||||
return loop;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get a child edge.
|
||||
/// </summary>
|
||||
/// <param name="edge">The edge.</param>
|
||||
/// <param name="index">The index.</param>
|
||||
public void GetChildEdge(ref EdgeShape edge, int index)
|
||||
{
|
||||
Debug.Assert(2 <= Vertices.Count);
|
||||
Debug.Assert(0 <= index && index < Vertices.Count);
|
||||
edge.ShapeType = ShapeType.Edge;
|
||||
edge._radius = _radius;
|
||||
edge.HasVertex0 = true;
|
||||
edge.HasVertex3 = true;
|
||||
|
||||
int i0 = index - 1 >= 0 ? index - 1 : Vertices.Count - 1;
|
||||
int i1 = index;
|
||||
int i2 = index + 1 < Vertices.Count ? index + 1 : 0;
|
||||
int i3 = index + 2;
|
||||
while (i3 >= Vertices.Count)
|
||||
{
|
||||
i3 -= Vertices.Count;
|
||||
}
|
||||
|
||||
edge.Vertex0 = Vertices[i0];
|
||||
edge.Vertex1 = Vertices[i1];
|
||||
edge.Vertex2 = Vertices[i2];
|
||||
edge.Vertex3 = Vertices[i3];
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Test a point for containment in this shape. This only works for convex shapes.
|
||||
/// </summary>
|
||||
/// <param name="transform">The shape world transform.</param>
|
||||
/// <param name="point">a point in world coordinates.</param>
|
||||
/// <returns>True if the point is inside the shape</returns>
|
||||
public override bool TestPoint(ref Transform transform, ref Vector2 point)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Cast a ray against a child shape.
|
||||
/// </summary>
|
||||
/// <param name="output">The ray-cast results.</param>
|
||||
/// <param name="input">The ray-cast input parameters.</param>
|
||||
/// <param name="transform">The transform to be applied to the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
/// <returns>True if the ray-cast hits the shape</returns>
|
||||
public override bool RayCast(out RayCastOutput output, ref RayCastInput input,
|
||||
ref Transform transform, int childIndex)
|
||||
{
|
||||
Debug.Assert(childIndex < Vertices.Count);
|
||||
|
||||
int i1 = childIndex;
|
||||
int i2 = childIndex + 1;
|
||||
if (i2 == Vertices.Count)
|
||||
{
|
||||
i2 = 0;
|
||||
}
|
||||
|
||||
_edgeShape.Vertex1 = Vertices[i1];
|
||||
_edgeShape.Vertex2 = Vertices[i2];
|
||||
|
||||
return _edgeShape.RayCast(out output, ref input, ref transform, 0);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Given a transform, compute the associated axis aligned bounding box for a child shape.
|
||||
/// </summary>
|
||||
/// <param name="aabb">The aabb results.</param>
|
||||
/// <param name="transform">The world transform of the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
public override void ComputeAABB(out AABB aabb, ref Transform transform, int childIndex)
|
||||
{
|
||||
Debug.Assert(childIndex < Vertices.Count);
|
||||
|
||||
int i1 = childIndex;
|
||||
int i2 = childIndex + 1;
|
||||
if (i2 == Vertices.Count)
|
||||
{
|
||||
i2 = 0;
|
||||
}
|
||||
|
||||
Vector2 v1 = MathUtils.Multiply(ref transform, Vertices[i1]);
|
||||
Vector2 v2 = MathUtils.Multiply(ref transform, Vertices[i2]);
|
||||
|
||||
aabb.LowerBound = Vector2.Min(v1, v2);
|
||||
aabb.UpperBound = Vector2.Max(v1, v2);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Chains have zero mass.
|
||||
/// </summary>
|
||||
public override void ComputeProperties()
|
||||
{
|
||||
//Does nothing. Loop shapes don't have properties.
|
||||
}
|
||||
|
||||
public override float ComputeSubmergedArea(Vector2 normal, float offset, Transform xf, out Vector2 sc)
|
||||
{
|
||||
sc = Vector2.Zero;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
556
axios/Collision/Shapes/PolygonShape.cs
Normal file
556
axios/Collision/Shapes/PolygonShape.cs
Normal file
@@ -0,0 +1,556 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using System.Diagnostics;
|
||||
using FarseerPhysics.Common;
|
||||
using FarseerPhysics.Common.Decomposition;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision.Shapes
|
||||
{
|
||||
/// <summary>
|
||||
/// Represents a simple non-selfintersecting convex polygon.
|
||||
/// If you want to have concave polygons, you will have to use the <see cref="BayazitDecomposer"/> or the <see cref="EarclipDecomposer"/>
|
||||
/// to decompose the concave polygon into 2 or more convex polygons.
|
||||
/// </summary>
|
||||
public class PolygonShape : Shape
|
||||
{
|
||||
public Vertices Normals;
|
||||
public Vertices Vertices;
|
||||
|
||||
/// <summary>
|
||||
/// Initializes a new instance of the <see cref="PolygonShape"/> class.
|
||||
/// </summary>
|
||||
/// <param name="vertices">The vertices.</param>
|
||||
/// <param name="density">The density.</param>
|
||||
public PolygonShape(Vertices vertices, float density)
|
||||
: base(density)
|
||||
{
|
||||
ShapeType = ShapeType.Polygon;
|
||||
_radius = Settings.PolygonRadius;
|
||||
|
||||
Set(vertices);
|
||||
}
|
||||
|
||||
public PolygonShape(float density)
|
||||
: base(density)
|
||||
{
|
||||
ShapeType = ShapeType.Polygon;
|
||||
_radius = Settings.PolygonRadius;
|
||||
Normals = new Vertices();
|
||||
Vertices = new Vertices();
|
||||
}
|
||||
|
||||
internal PolygonShape()
|
||||
: base(0)
|
||||
{
|
||||
ShapeType = ShapeType.Polygon;
|
||||
_radius = Settings.PolygonRadius;
|
||||
Normals = new Vertices();
|
||||
Vertices = new Vertices();
|
||||
}
|
||||
|
||||
public override int ChildCount
|
||||
{
|
||||
get { return 1; }
|
||||
}
|
||||
|
||||
public override Shape Clone()
|
||||
{
|
||||
PolygonShape clone = new PolygonShape();
|
||||
clone.ShapeType = ShapeType;
|
||||
clone._radius = _radius;
|
||||
clone._density = _density;
|
||||
|
||||
if (Settings.ConserveMemory)
|
||||
{
|
||||
#pragma warning disable 162
|
||||
clone.Vertices = Vertices;
|
||||
clone.Normals = Normals;
|
||||
#pragma warning restore 162
|
||||
}
|
||||
else
|
||||
{
|
||||
clone.Vertices = new Vertices(Vertices);
|
||||
clone.Normals = new Vertices(Normals);
|
||||
}
|
||||
|
||||
clone.MassData = MassData;
|
||||
return clone;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Copy vertices. This assumes the vertices define a convex polygon.
|
||||
/// It is assumed that the exterior is the the right of each edge.
|
||||
/// </summary>
|
||||
/// <param name="vertices">The vertices.</param>
|
||||
public void Set(Vertices vertices)
|
||||
{
|
||||
Debug.Assert(vertices.Count >= 3 && vertices.Count <= Settings.MaxPolygonVertices);
|
||||
|
||||
#pragma warning disable 162
|
||||
if (Settings.ConserveMemory)
|
||||
Vertices = vertices;
|
||||
else
|
||||
// Copy vertices.
|
||||
Vertices = new Vertices(vertices);
|
||||
#pragma warning restore 162
|
||||
|
||||
Normals = new Vertices(vertices.Count);
|
||||
|
||||
// Compute normals. Ensure the edges have non-zero length.
|
||||
for (int i = 0; i < vertices.Count; ++i)
|
||||
{
|
||||
int i1 = i;
|
||||
int i2 = i + 1 < vertices.Count ? i + 1 : 0;
|
||||
Vector2 edge = Vertices[i2] - Vertices[i1];
|
||||
Debug.Assert(edge.LengthSquared() > Settings.Epsilon * Settings.Epsilon);
|
||||
|
||||
Vector2 temp = new Vector2(edge.Y, -edge.X);
|
||||
temp.Normalize();
|
||||
Normals.Add(temp);
|
||||
}
|
||||
|
||||
#if DEBUG
|
||||
// Ensure the polygon is convex and the interior
|
||||
// is to the left of each edge.
|
||||
for (int i = 0; i < Vertices.Count; ++i)
|
||||
{
|
||||
int i1 = i;
|
||||
int i2 = i + 1 < Vertices.Count ? i + 1 : 0;
|
||||
Vector2 edge = Vertices[i2] - Vertices[i1];
|
||||
|
||||
for (int j = 0; j < vertices.Count; ++j)
|
||||
{
|
||||
// Don't check vertices on the current edge.
|
||||
if (j == i1 || j == i2)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
Vector2 r = Vertices[j] - Vertices[i1];
|
||||
|
||||
// Your polygon is non-convex (it has an indentation) or
|
||||
// has colinear edges.
|
||||
float s = edge.X * r.Y - edge.Y * r.X;
|
||||
|
||||
Debug.Assert(s > 0.0f);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Compute the polygon mass data
|
||||
ComputeProperties();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Compute the mass properties of this shape using its dimensions and density.
|
||||
/// The inertia tensor is computed about the local origin, not the centroid.
|
||||
/// </summary>
|
||||
public override void ComputeProperties()
|
||||
{
|
||||
// Polygon mass, centroid, and inertia.
|
||||
// Let rho be the polygon density in mass per unit area.
|
||||
// Then:
|
||||
// mass = rho * int(dA)
|
||||
// centroid.X = (1/mass) * rho * int(x * dA)
|
||||
// centroid.Y = (1/mass) * rho * int(y * dA)
|
||||
// I = rho * int((x*x + y*y) * dA)
|
||||
//
|
||||
// We can compute these integrals by summing all the integrals
|
||||
// for each triangle of the polygon. To evaluate the integral
|
||||
// for a single triangle, we make a change of variables to
|
||||
// the (u,v) coordinates of the triangle:
|
||||
// x = x0 + e1x * u + e2x * v
|
||||
// y = y0 + e1y * u + e2y * v
|
||||
// where 0 <= u && 0 <= v && u + v <= 1.
|
||||
//
|
||||
// We integrate u from [0,1-v] and then v from [0,1].
|
||||
// We also need to use the Jacobian of the transformation:
|
||||
// D = cross(e1, e2)
|
||||
//
|
||||
// Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
|
||||
//
|
||||
// The rest of the derivation is handled by computer algebra.
|
||||
|
||||
Debug.Assert(Vertices.Count >= 3);
|
||||
|
||||
if (_density <= 0)
|
||||
return;
|
||||
|
||||
Vector2 center = Vector2.Zero;
|
||||
float area = 0.0f;
|
||||
float I = 0.0f;
|
||||
|
||||
// pRef is the reference point for forming triangles.
|
||||
// It's location doesn't change the result (except for rounding error).
|
||||
Vector2 pRef = Vector2.Zero;
|
||||
|
||||
#if false
|
||||
// This code would put the reference point inside the polygon.
|
||||
for (int i = 0; i < count; ++i)
|
||||
{
|
||||
pRef += vs[i];
|
||||
}
|
||||
pRef *= 1.0f / count;
|
||||
#endif
|
||||
|
||||
const float inv3 = 1.0f / 3.0f;
|
||||
|
||||
for (int i = 0; i < Vertices.Count; ++i)
|
||||
{
|
||||
// Triangle vertices.
|
||||
Vector2 p1 = pRef;
|
||||
Vector2 p2 = Vertices[i];
|
||||
Vector2 p3 = i + 1 < Vertices.Count ? Vertices[i + 1] : Vertices[0];
|
||||
|
||||
Vector2 e1 = p2 - p1;
|
||||
Vector2 e2 = p3 - p1;
|
||||
|
||||
float d;
|
||||
MathUtils.Cross(ref e1, ref e2, out d);
|
||||
|
||||
float triangleArea = 0.5f * d;
|
||||
area += triangleArea;
|
||||
|
||||
// Area weighted centroid
|
||||
center += triangleArea * inv3 * (p1 + p2 + p3);
|
||||
|
||||
float px = p1.X, py = p1.Y;
|
||||
float ex1 = e1.X, ey1 = e1.Y;
|
||||
float ex2 = e2.X, ey2 = e2.Y;
|
||||
|
||||
float intx2 = inv3 * (0.25f * (ex1 * ex1 + ex2 * ex1 + ex2 * ex2) + (px * ex1 + px * ex2)) +
|
||||
0.5f * px * px;
|
||||
float inty2 = inv3 * (0.25f * (ey1 * ey1 + ey2 * ey1 + ey2 * ey2) + (py * ey1 + py * ey2)) +
|
||||
0.5f * py * py;
|
||||
|
||||
I += d * (intx2 + inty2);
|
||||
}
|
||||
|
||||
//The area is too small for the engine to handle.
|
||||
Debug.Assert(area > Settings.Epsilon);
|
||||
|
||||
// We save the area
|
||||
MassData.Area = area;
|
||||
|
||||
// Total mass
|
||||
MassData.Mass = _density * area;
|
||||
|
||||
// Center of mass
|
||||
center *= 1.0f / area;
|
||||
MassData.Centroid = center;
|
||||
|
||||
// Inertia tensor relative to the local origin.
|
||||
MassData.Inertia = _density * I;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Build vertices to represent an axis-aligned box.
|
||||
/// </summary>
|
||||
/// <param name="halfWidth">The half-width.</param>
|
||||
/// <param name="halfHeight">The half-height.</param>
|
||||
public void SetAsBox(float halfWidth, float halfHeight)
|
||||
{
|
||||
Set(PolygonTools.CreateRectangle(halfWidth, halfHeight));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Build vertices to represent an oriented box.
|
||||
/// </summary>
|
||||
/// <param name="halfWidth">The half-width..</param>
|
||||
/// <param name="halfHeight">The half-height.</param>
|
||||
/// <param name="center">The center of the box in local coordinates.</param>
|
||||
/// <param name="angle">The rotation of the box in local coordinates.</param>
|
||||
public void SetAsBox(float halfWidth, float halfHeight, Vector2 center, float angle)
|
||||
{
|
||||
Set(PolygonTools.CreateRectangle(halfWidth, halfHeight, center, angle));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Test a point for containment in this shape. This only works for convex shapes.
|
||||
/// </summary>
|
||||
/// <param name="transform">The shape world transform.</param>
|
||||
/// <param name="point">a point in world coordinates.</param>
|
||||
/// <returns>True if the point is inside the shape</returns>
|
||||
public override bool TestPoint(ref Transform transform, ref Vector2 point)
|
||||
{
|
||||
Vector2 pLocal = MathUtils.MultiplyT(ref transform.R, point - transform.Position);
|
||||
|
||||
for (int i = 0; i < Vertices.Count; ++i)
|
||||
{
|
||||
float dot = Vector2.Dot(Normals[i], pLocal - Vertices[i]);
|
||||
if (dot > 0.0f)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Cast a ray against a child shape.
|
||||
/// </summary>
|
||||
/// <param name="output">The ray-cast results.</param>
|
||||
/// <param name="input">The ray-cast input parameters.</param>
|
||||
/// <param name="transform">The transform to be applied to the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
/// <returns>True if the ray-cast hits the shape</returns>
|
||||
public override bool RayCast(out RayCastOutput output, ref RayCastInput input, ref Transform transform,
|
||||
int childIndex)
|
||||
{
|
||||
output = new RayCastOutput();
|
||||
|
||||
// Put the ray into the polygon's frame of reference.
|
||||
Vector2 p1 = MathUtils.MultiplyT(ref transform.R, input.Point1 - transform.Position);
|
||||
Vector2 p2 = MathUtils.MultiplyT(ref transform.R, input.Point2 - transform.Position);
|
||||
Vector2 d = p2 - p1;
|
||||
|
||||
float lower = 0.0f, upper = input.MaxFraction;
|
||||
|
||||
int index = -1;
|
||||
|
||||
for (int i = 0; i < Vertices.Count; ++i)
|
||||
{
|
||||
// p = p1 + a * d
|
||||
// dot(normal, p - v) = 0
|
||||
// dot(normal, p1 - v) + a * dot(normal, d) = 0
|
||||
float numerator = Vector2.Dot(Normals[i], Vertices[i] - p1);
|
||||
float denominator = Vector2.Dot(Normals[i], d);
|
||||
|
||||
if (denominator == 0.0f)
|
||||
{
|
||||
if (numerator < 0.0f)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Note: we want this predicate without division:
|
||||
// lower < numerator / denominator, where denominator < 0
|
||||
// Since denominator < 0, we have to flip the inequality:
|
||||
// lower < numerator / denominator <==> denominator * lower > numerator.
|
||||
if (denominator < 0.0f && numerator < lower * denominator)
|
||||
{
|
||||
// Increase lower.
|
||||
// The segment enters this half-space.
|
||||
lower = numerator / denominator;
|
||||
index = i;
|
||||
}
|
||||
else if (denominator > 0.0f && numerator < upper * denominator)
|
||||
{
|
||||
// Decrease upper.
|
||||
// The segment exits this half-space.
|
||||
upper = numerator / denominator;
|
||||
}
|
||||
}
|
||||
|
||||
// The use of epsilon here causes the assert on lower to trip
|
||||
// in some cases. Apparently the use of epsilon was to make edge
|
||||
// shapes work, but now those are handled separately.
|
||||
//if (upper < lower - b2_epsilon)
|
||||
if (upper < lower)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
Debug.Assert(0.0f <= lower && lower <= input.MaxFraction);
|
||||
|
||||
if (index >= 0)
|
||||
{
|
||||
output.Fraction = lower;
|
||||
output.Normal = MathUtils.Multiply(ref transform.R, Normals[index]);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Given a transform, compute the associated axis aligned bounding box for a child shape.
|
||||
/// </summary>
|
||||
/// <param name="aabb">The aabb results.</param>
|
||||
/// <param name="transform">The world transform of the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
public override void ComputeAABB(out AABB aabb, ref Transform transform, int childIndex)
|
||||
{
|
||||
Vector2 lower = MathUtils.Multiply(ref transform, Vertices[0]);
|
||||
Vector2 upper = lower;
|
||||
|
||||
for (int i = 1; i < Vertices.Count; ++i)
|
||||
{
|
||||
Vector2 v = MathUtils.Multiply(ref transform, Vertices[i]);
|
||||
lower = Vector2.Min(lower, v);
|
||||
upper = Vector2.Max(upper, v);
|
||||
}
|
||||
|
||||
Vector2 r = new Vector2(Radius, Radius);
|
||||
aabb.LowerBound = lower - r;
|
||||
aabb.UpperBound = upper + r;
|
||||
}
|
||||
|
||||
public bool CompareTo(PolygonShape shape)
|
||||
{
|
||||
if (Vertices.Count != shape.Vertices.Count)
|
||||
return false;
|
||||
|
||||
for (int i = 0; i < Vertices.Count; i++)
|
||||
{
|
||||
if (Vertices[i] != shape.Vertices[i])
|
||||
return false;
|
||||
}
|
||||
|
||||
return (Radius == shape.Radius &&
|
||||
MassData == shape.MassData);
|
||||
}
|
||||
|
||||
public override float ComputeSubmergedArea(Vector2 normal, float offset, Transform xf, out Vector2 sc)
|
||||
{
|
||||
sc = Vector2.Zero;
|
||||
|
||||
//Transform plane into shape co-ordinates
|
||||
Vector2 normalL = MathUtils.MultiplyT(ref xf.R, normal);
|
||||
float offsetL = offset - Vector2.Dot(normal, xf.Position);
|
||||
|
||||
float[] depths = new float[Settings.MaxPolygonVertices];
|
||||
int diveCount = 0;
|
||||
int intoIndex = -1;
|
||||
int outoIndex = -1;
|
||||
|
||||
bool lastSubmerged = false;
|
||||
int i;
|
||||
for (i = 0; i < Vertices.Count; i++)
|
||||
{
|
||||
depths[i] = Vector2.Dot(normalL, Vertices[i]) - offsetL;
|
||||
bool isSubmerged = depths[i] < -Settings.Epsilon;
|
||||
if (i > 0)
|
||||
{
|
||||
if (isSubmerged)
|
||||
{
|
||||
if (!lastSubmerged)
|
||||
{
|
||||
intoIndex = i - 1;
|
||||
diveCount++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (lastSubmerged)
|
||||
{
|
||||
outoIndex = i - 1;
|
||||
diveCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
lastSubmerged = isSubmerged;
|
||||
}
|
||||
switch (diveCount)
|
||||
{
|
||||
case 0:
|
||||
if (lastSubmerged)
|
||||
{
|
||||
//Completely submerged
|
||||
sc = MathUtils.Multiply(ref xf, MassData.Centroid);
|
||||
return MassData.Mass / Density;
|
||||
}
|
||||
else
|
||||
{
|
||||
//Completely dry
|
||||
return 0;
|
||||
}
|
||||
#pragma warning disable 162
|
||||
break;
|
||||
#pragma warning restore 162
|
||||
case 1:
|
||||
if (intoIndex == -1)
|
||||
{
|
||||
intoIndex = Vertices.Count - 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
outoIndex = Vertices.Count - 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
int intoIndex2 = (intoIndex + 1) % Vertices.Count;
|
||||
int outoIndex2 = (outoIndex + 1) % Vertices.Count;
|
||||
|
||||
float intoLambda = (0 - depths[intoIndex]) / (depths[intoIndex2] - depths[intoIndex]);
|
||||
float outoLambda = (0 - depths[outoIndex]) / (depths[outoIndex2] - depths[outoIndex]);
|
||||
|
||||
Vector2 intoVec = new Vector2(
|
||||
Vertices[intoIndex].X * (1 - intoLambda) + Vertices[intoIndex2].X * intoLambda,
|
||||
Vertices[intoIndex].Y * (1 - intoLambda) + Vertices[intoIndex2].Y * intoLambda);
|
||||
Vector2 outoVec = new Vector2(
|
||||
Vertices[outoIndex].X * (1 - outoLambda) + Vertices[outoIndex2].X * outoLambda,
|
||||
Vertices[outoIndex].Y * (1 - outoLambda) + Vertices[outoIndex2].Y * outoLambda);
|
||||
|
||||
//Initialize accumulator
|
||||
float area = 0;
|
||||
Vector2 center = new Vector2(0, 0);
|
||||
Vector2 p2 = Vertices[intoIndex2];
|
||||
Vector2 p3;
|
||||
|
||||
float k_inv3 = 1.0f / 3.0f;
|
||||
|
||||
//An awkward loop from intoIndex2+1 to outIndex2
|
||||
i = intoIndex2;
|
||||
while (i != outoIndex2)
|
||||
{
|
||||
i = (i + 1) % Vertices.Count;
|
||||
if (i == outoIndex2)
|
||||
p3 = outoVec;
|
||||
else
|
||||
p3 = Vertices[i];
|
||||
//Add the triangle formed by intoVec,p2,p3
|
||||
{
|
||||
Vector2 e1 = p2 - intoVec;
|
||||
Vector2 e2 = p3 - intoVec;
|
||||
|
||||
float D = MathUtils.Cross(e1, e2);
|
||||
|
||||
float triangleArea = 0.5f * D;
|
||||
|
||||
area += triangleArea;
|
||||
|
||||
// Area weighted centroid
|
||||
center += triangleArea * k_inv3 * (intoVec + p2 + p3);
|
||||
}
|
||||
//
|
||||
p2 = p3;
|
||||
}
|
||||
|
||||
//Normalize and transform centroid
|
||||
center *= 1.0f / area;
|
||||
|
||||
sc = MathUtils.Multiply(ref xf, center);
|
||||
|
||||
return area;
|
||||
}
|
||||
}
|
||||
}
|
222
axios/Collision/Shapes/Shape.cs
Normal file
222
axios/Collision/Shapes/Shape.cs
Normal file
@@ -0,0 +1,222 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using System;
|
||||
using FarseerPhysics.Common;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision.Shapes
|
||||
{
|
||||
/// <summary>
|
||||
/// This holds the mass data computed for a shape.
|
||||
/// </summary>
|
||||
public struct MassData : IEquatable<MassData>
|
||||
{
|
||||
/// <summary>
|
||||
/// The area of the shape
|
||||
/// </summary>
|
||||
public float Area;
|
||||
|
||||
/// <summary>
|
||||
/// The position of the shape's centroid relative to the shape's origin.
|
||||
/// </summary>
|
||||
public Vector2 Centroid;
|
||||
|
||||
/// <summary>
|
||||
/// The rotational inertia of the shape about the local origin.
|
||||
/// </summary>
|
||||
public float Inertia;
|
||||
|
||||
/// <summary>
|
||||
/// The mass of the shape, usually in kilograms.
|
||||
/// </summary>
|
||||
public float Mass;
|
||||
|
||||
#region IEquatable<MassData> Members
|
||||
|
||||
public bool Equals(MassData other)
|
||||
{
|
||||
return this == other;
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
public static bool operator ==(MassData left, MassData right)
|
||||
{
|
||||
return (left.Area == right.Area && left.Mass == right.Mass && left.Centroid == right.Centroid &&
|
||||
left.Inertia == right.Inertia);
|
||||
}
|
||||
|
||||
public static bool operator !=(MassData left, MassData right)
|
||||
{
|
||||
return !(left == right);
|
||||
}
|
||||
|
||||
public override bool Equals(object obj)
|
||||
{
|
||||
if (ReferenceEquals(null, obj)) return false;
|
||||
if (obj.GetType() != typeof(MassData)) return false;
|
||||
return Equals((MassData)obj);
|
||||
}
|
||||
|
||||
public override int GetHashCode()
|
||||
{
|
||||
unchecked
|
||||
{
|
||||
int result = Area.GetHashCode();
|
||||
result = (result * 397) ^ Centroid.GetHashCode();
|
||||
result = (result * 397) ^ Inertia.GetHashCode();
|
||||
result = (result * 397) ^ Mass.GetHashCode();
|
||||
return result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public enum ShapeType
|
||||
{
|
||||
Unknown = -1,
|
||||
Circle = 0,
|
||||
Edge = 1,
|
||||
Polygon = 2,
|
||||
Loop = 3,
|
||||
TypeCount = 4,
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// A shape is used for collision detection. You can create a shape however you like.
|
||||
/// Shapes used for simulation in World are created automatically when a Fixture
|
||||
/// is created. Shapes may encapsulate a one or more child shapes.
|
||||
/// </summary>
|
||||
public abstract class Shape
|
||||
{
|
||||
private static int _shapeIdCounter;
|
||||
public MassData MassData;
|
||||
public int ShapeId;
|
||||
|
||||
internal float _density;
|
||||
internal float _radius;
|
||||
|
||||
protected Shape(float density)
|
||||
{
|
||||
_density = density;
|
||||
ShapeType = ShapeType.Unknown;
|
||||
ShapeId = _shapeIdCounter++;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get the type of this shape.
|
||||
/// </summary>
|
||||
/// <value>The type of the shape.</value>
|
||||
public ShapeType ShapeType { get; internal set; }
|
||||
|
||||
/// <summary>
|
||||
/// Get the number of child primitives.
|
||||
/// </summary>
|
||||
/// <value></value>
|
||||
public abstract int ChildCount { get; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the density.
|
||||
/// </summary>
|
||||
/// <value>The density.</value>
|
||||
public float Density
|
||||
{
|
||||
get { return _density; }
|
||||
set
|
||||
{
|
||||
_density = value;
|
||||
ComputeProperties();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Radius of the Shape
|
||||
/// </summary>
|
||||
public float Radius
|
||||
{
|
||||
get { return _radius; }
|
||||
set
|
||||
{
|
||||
_radius = value;
|
||||
ComputeProperties();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Clone the concrete shape
|
||||
/// </summary>
|
||||
/// <returns>A clone of the shape</returns>
|
||||
public abstract Shape Clone();
|
||||
|
||||
/// <summary>
|
||||
/// Test a point for containment in this shape. This only works for convex shapes.
|
||||
/// </summary>
|
||||
/// <param name="transform">The shape world transform.</param>
|
||||
/// <param name="point">a point in world coordinates.</param>
|
||||
/// <returns>True if the point is inside the shape</returns>
|
||||
public abstract bool TestPoint(ref Transform transform, ref Vector2 point);
|
||||
|
||||
/// <summary>
|
||||
/// Cast a ray against a child shape.
|
||||
/// </summary>
|
||||
/// <param name="output">The ray-cast results.</param>
|
||||
/// <param name="input">The ray-cast input parameters.</param>
|
||||
/// <param name="transform">The transform to be applied to the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
/// <returns>True if the ray-cast hits the shape</returns>
|
||||
public abstract bool RayCast(out RayCastOutput output, ref RayCastInput input, ref Transform transform,
|
||||
int childIndex);
|
||||
|
||||
/// <summary>
|
||||
/// Given a transform, compute the associated axis aligned bounding box for a child shape.
|
||||
/// </summary>
|
||||
/// <param name="aabb">The aabb results.</param>
|
||||
/// <param name="transform">The world transform of the shape.</param>
|
||||
/// <param name="childIndex">The child shape index.</param>
|
||||
public abstract void ComputeAABB(out AABB aabb, ref Transform transform, int childIndex);
|
||||
|
||||
/// <summary>
|
||||
/// Compute the mass properties of this shape using its dimensions and density.
|
||||
/// The inertia tensor is computed about the local origin, not the centroid.
|
||||
/// </summary>
|
||||
public abstract void ComputeProperties();
|
||||
|
||||
public bool CompareTo(Shape shape)
|
||||
{
|
||||
if (shape is PolygonShape && this is PolygonShape)
|
||||
return ((PolygonShape)this).CompareTo((PolygonShape)shape);
|
||||
|
||||
if (shape is CircleShape && this is CircleShape)
|
||||
return ((CircleShape)this).CompareTo((CircleShape)shape);
|
||||
|
||||
if (shape is EdgeShape && this is EdgeShape)
|
||||
return ((EdgeShape)this).CompareTo((EdgeShape)shape);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
public abstract float ComputeSubmergedArea(Vector2 normal, float offset, Transform xf, out Vector2 sc);
|
||||
}
|
||||
}
|
500
axios/Collision/TimeOfImpact.cs
Normal file
500
axios/Collision/TimeOfImpact.cs
Normal file
@@ -0,0 +1,500 @@
|
||||
/*
|
||||
* Farseer Physics Engine based on Box2D.XNA port:
|
||||
* Copyright (c) 2010 Ian Qvist
|
||||
*
|
||||
* Box2D.XNA port of Box2D:
|
||||
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||||
*
|
||||
* Original source Box2D:
|
||||
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgment in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
using System;
|
||||
using System.Diagnostics;
|
||||
using FarseerPhysics.Common;
|
||||
using Microsoft.Xna.Framework;
|
||||
|
||||
namespace FarseerPhysics.Collision
|
||||
{
|
||||
/// <summary>
|
||||
/// Input parameters for CalculateTimeOfImpact
|
||||
/// </summary>
|
||||
public class TOIInput
|
||||
{
|
||||
public DistanceProxy ProxyA = new DistanceProxy();
|
||||
public DistanceProxy ProxyB = new DistanceProxy();
|
||||
public Sweep SweepA;
|
||||
public Sweep SweepB;
|
||||
public float TMax; // defines sweep interval [0, tMax]
|
||||
}
|
||||
|
||||
public enum TOIOutputState
|
||||
{
|
||||
Unknown,
|
||||
Failed,
|
||||
Overlapped,
|
||||
Touching,
|
||||
Seperated,
|
||||
}
|
||||
|
||||
public struct TOIOutput
|
||||
{
|
||||
public TOIOutputState State;
|
||||
public float T;
|
||||
}
|
||||
|
||||
public enum SeparationFunctionType
|
||||
{
|
||||
Points,
|
||||
FaceA,
|
||||
FaceB
|
||||
}
|
||||
|
||||
public static class SeparationFunction
|
||||
{
|
||||
private static Vector2 _axis;
|
||||
private static Vector2 _localPoint;
|
||||
private static DistanceProxy _proxyA = new DistanceProxy();
|
||||
private static DistanceProxy _proxyB = new DistanceProxy();
|
||||
private static Sweep _sweepA, _sweepB;
|
||||
private static SeparationFunctionType _type;
|
||||
|
||||
public static void Set(ref SimplexCache cache,
|
||||
DistanceProxy proxyA, ref Sweep sweepA,
|
||||
DistanceProxy proxyB, ref Sweep sweepB,
|
||||
float t1)
|
||||
{
|
||||
_localPoint = Vector2.Zero;
|
||||
_proxyA = proxyA;
|
||||
_proxyB = proxyB;
|
||||
int count = cache.Count;
|
||||
Debug.Assert(0 < count && count < 3);
|
||||
|
||||
_sweepA = sweepA;
|
||||
_sweepB = sweepB;
|
||||
|
||||
Transform xfA, xfB;
|
||||
_sweepA.GetTransform(out xfA, t1);
|
||||
_sweepB.GetTransform(out xfB, t1);
|
||||
|
||||
if (count == 1)
|
||||
{
|
||||
_type = SeparationFunctionType.Points;
|
||||
Vector2 localPointA = _proxyA.Vertices[cache.IndexA[0]];
|
||||
Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
||||
_axis = pointB - pointA;
|
||||
_axis.Normalize();
|
||||
return;
|
||||
}
|
||||
else if (cache.IndexA[0] == cache.IndexA[1])
|
||||
{
|
||||
// Two points on B and one on A.
|
||||
_type = SeparationFunctionType.FaceB;
|
||||
Vector2 localPointB1 = proxyB.Vertices[cache.IndexB[0]];
|
||||
Vector2 localPointB2 = proxyB.Vertices[cache.IndexB[1]];
|
||||
|
||||
Vector2 a = localPointB2 - localPointB1;
|
||||
_axis = new Vector2(a.Y, -a.X);
|
||||
_axis.Normalize();
|
||||
Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);
|
||||
|
||||
_localPoint = 0.5f * (localPointB1 + localPointB2);
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);
|
||||
|
||||
Vector2 localPointA = proxyA.Vertices[cache.IndexA[0]];
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
||||
|
||||
float s = Vector2.Dot(pointA - pointB, normal);
|
||||
if (s < 0.0f)
|
||||
{
|
||||
_axis = -_axis;
|
||||
s = -s;
|
||||
}
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Two points on A and one or two points on B.
|
||||
_type = SeparationFunctionType.FaceA;
|
||||
Vector2 localPointA1 = _proxyA.Vertices[cache.IndexA[0]];
|
||||
Vector2 localPointA2 = _proxyA.Vertices[cache.IndexA[1]];
|
||||
|
||||
Vector2 a = localPointA2 - localPointA1;
|
||||
_axis = new Vector2(a.Y, -a.X);
|
||||
_axis.Normalize();
|
||||
Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);
|
||||
|
||||
_localPoint = 0.5f * (localPointA1 + localPointA2);
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);
|
||||
|
||||
Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
||||
|
||||
float s = Vector2.Dot(pointB - pointA, normal);
|
||||
if (s < 0.0f)
|
||||
{
|
||||
_axis = -_axis;
|
||||
s = -s;
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
public static float FindMinSeparation(out int indexA, out int indexB, float t)
|
||||
{
|
||||
Transform xfA, xfB;
|
||||
_sweepA.GetTransform(out xfA, t);
|
||||
_sweepB.GetTransform(out xfB, t);
|
||||
|
||||
switch (_type)
|
||||
{
|
||||
case SeparationFunctionType.Points:
|
||||
{
|
||||
Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, _axis);
|
||||
Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -_axis);
|
||||
|
||||
indexA = _proxyA.GetSupport(axisA);
|
||||
indexB = _proxyB.GetSupport(axisB);
|
||||
|
||||
Vector2 localPointA = _proxyA.Vertices[indexA];
|
||||
Vector2 localPointB = _proxyB.Vertices[indexB];
|
||||
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
||||
|
||||
float separation = Vector2.Dot(pointB - pointA, _axis);
|
||||
return separation;
|
||||
}
|
||||
|
||||
case SeparationFunctionType.FaceA:
|
||||
{
|
||||
Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);
|
||||
|
||||
Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -normal);
|
||||
|
||||
indexA = -1;
|
||||
indexB = _proxyB.GetSupport(axisB);
|
||||
|
||||
Vector2 localPointB = _proxyB.Vertices[indexB];
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
||||
|
||||
float separation = Vector2.Dot(pointB - pointA, normal);
|
||||
return separation;
|
||||
}
|
||||
|
||||
case SeparationFunctionType.FaceB:
|
||||
{
|
||||
Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);
|
||||
|
||||
Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, -normal);
|
||||
|
||||
indexB = -1;
|
||||
indexA = _proxyA.GetSupport(axisA);
|
||||
|
||||
Vector2 localPointA = _proxyA.Vertices[indexA];
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
||||
|
||||
float separation = Vector2.Dot(pointA - pointB, normal);
|
||||
return separation;
|
||||
}
|
||||
|
||||
default:
|
||||
Debug.Assert(false);
|
||||
indexA = -1;
|
||||
indexB = -1;
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
public static float Evaluate(int indexA, int indexB, float t)
|
||||
{
|
||||
Transform xfA, xfB;
|
||||
_sweepA.GetTransform(out xfA, t);
|
||||
_sweepB.GetTransform(out xfB, t);
|
||||
|
||||
switch (_type)
|
||||
{
|
||||
case SeparationFunctionType.Points:
|
||||
{
|
||||
Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, _axis);
|
||||
Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -_axis);
|
||||
|
||||
Vector2 localPointA = _proxyA.Vertices[indexA];
|
||||
Vector2 localPointB = _proxyB.Vertices[indexB];
|
||||
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
||||
float separation = Vector2.Dot(pointB - pointA, _axis);
|
||||
|
||||
return separation;
|
||||
}
|
||||
|
||||
case SeparationFunctionType.FaceA:
|
||||
{
|
||||
Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);
|
||||
|
||||
Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -normal);
|
||||
|
||||
Vector2 localPointB = _proxyB.Vertices[indexB];
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
||||
|
||||
float separation = Vector2.Dot(pointB - pointA, normal);
|
||||
return separation;
|
||||
}
|
||||
|
||||
case SeparationFunctionType.FaceB:
|
||||
{
|
||||
Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);
|
||||
Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);
|
||||
|
||||
Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, -normal);
|
||||
|
||||
Vector2 localPointA = _proxyA.Vertices[indexA];
|
||||
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
||||
|
||||
float separation = Vector2.Dot(pointA - pointB, normal);
|
||||
return separation;
|
||||
}
|
||||
|
||||
default:
|
||||
Debug.Assert(false);
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static class TimeOfImpact
|
||||
{
|
||||
// CCD via the local separating axis method. This seeks progression
|
||||
// by computing the largest time at which separation is maintained.
|
||||
|
||||
public static int TOICalls, TOIIters, TOIMaxIters;
|
||||
public static int TOIRootIters, TOIMaxRootIters;
|
||||
private static DistanceInput _distanceInput = new DistanceInput();
|
||||
|
||||
/// <summary>
|
||||
/// Compute the upper bound on time before two shapes penetrate. Time is represented as
|
||||
/// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
|
||||
/// non-tunneling collision. If you change the time interval, you should call this function
|
||||
/// again.
|
||||
/// Note: use Distance() to compute the contact point and normal at the time of impact.
|
||||
/// </summary>
|
||||
/// <param name="output">The output.</param>
|
||||
/// <param name="input">The input.</param>
|
||||
public static void CalculateTimeOfImpact(out TOIOutput output, TOIInput input)
|
||||
{
|
||||
++TOICalls;
|
||||
|
||||
output = new TOIOutput();
|
||||
output.State = TOIOutputState.Unknown;
|
||||
output.T = input.TMax;
|
||||
|
||||
Sweep sweepA = input.SweepA;
|
||||
Sweep sweepB = input.SweepB;
|
||||
|
||||
// Large rotations can make the root finder fail, so we normalize the
|
||||
// sweep angles.
|
||||
sweepA.Normalize();
|
||||
sweepB.Normalize();
|
||||
|
||||
float tMax = input.TMax;
|
||||
|
||||
float totalRadius = input.ProxyA.Radius + input.ProxyB.Radius;
|
||||
float target = Math.Max(Settings.LinearSlop, totalRadius - 3.0f * Settings.LinearSlop);
|
||||
const float tolerance = 0.25f * Settings.LinearSlop;
|
||||
Debug.Assert(target > tolerance);
|
||||
|
||||
float t1 = 0.0f;
|
||||
const int k_maxIterations = 20;
|
||||
int iter = 0;
|
||||
|
||||
// Prepare input for distance query.
|
||||
SimplexCache cache;
|
||||
_distanceInput.ProxyA = input.ProxyA;
|
||||
_distanceInput.ProxyB = input.ProxyB;
|
||||
_distanceInput.UseRadii = false;
|
||||
|
||||
// The outer loop progressively attempts to compute new separating axes.
|
||||
// This loop terminates when an axis is repeated (no progress is made).
|
||||
for (; ; )
|
||||
{
|
||||
Transform xfA, xfB;
|
||||
sweepA.GetTransform(out xfA, t1);
|
||||
sweepB.GetTransform(out xfB, t1);
|
||||
|
||||
// Get the distance between shapes. We can also use the results
|
||||
// to get a separating axis.
|
||||
_distanceInput.TransformA = xfA;
|
||||
_distanceInput.TransformB = xfB;
|
||||
DistanceOutput distanceOutput;
|
||||
Distance.ComputeDistance(out distanceOutput, out cache, _distanceInput);
|
||||
|
||||
// If the shapes are overlapped, we give up on continuous collision.
|
||||
if (distanceOutput.Distance <= 0.0f)
|
||||
{
|
||||
// Failure!
|
||||
output.State = TOIOutputState.Overlapped;
|
||||
output.T = 0.0f;
|
||||
break;
|
||||
}
|
||||
|
||||
if (distanceOutput.Distance < target + tolerance)
|
||||
{
|
||||
// Victory!
|
||||
output.State = TOIOutputState.Touching;
|
||||
output.T = t1;
|
||||
break;
|
||||
}
|
||||
|
||||
SeparationFunction.Set(ref cache, input.ProxyA, ref sweepA, input.ProxyB, ref sweepB, t1);
|
||||
|
||||
// Compute the TOI on the separating axis. We do this by successively
|
||||
// resolving the deepest point. This loop is bounded by the number of vertices.
|
||||
bool done = false;
|
||||
float t2 = tMax;
|
||||
int pushBackIter = 0;
|
||||
for (; ; )
|
||||
{
|
||||
// Find the deepest point at t2. Store the witness point indices.
|
||||
int indexA, indexB;
|
||||
float s2 = SeparationFunction.FindMinSeparation(out indexA, out indexB, t2);
|
||||
|
||||
// Is the final configuration separated?
|
||||
if (s2 > target + tolerance)
|
||||
{
|
||||
// Victory!
|
||||
output.State = TOIOutputState.Seperated;
|
||||
output.T = tMax;
|
||||
done = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// Has the separation reached tolerance?
|
||||
if (s2 > target - tolerance)
|
||||
{
|
||||
// Advance the sweeps
|
||||
t1 = t2;
|
||||
break;
|
||||
}
|
||||
|
||||
// Compute the initial separation of the witness points.
|
||||
float s1 = SeparationFunction.Evaluate(indexA, indexB, t1);
|
||||
|
||||
// Check for initial overlap. This might happen if the root finder
|
||||
// runs out of iterations.
|
||||
if (s1 < target - tolerance)
|
||||
{
|
||||
output.State = TOIOutputState.Failed;
|
||||
output.T = t1;
|
||||
done = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// Check for touching
|
||||
if (s1 <= target + tolerance)
|
||||
{
|
||||
// Victory! t1 should hold the TOI (could be 0.0).
|
||||
output.State = TOIOutputState.Touching;
|
||||
output.T = t1;
|
||||
done = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// Compute 1D root of: f(x) - target = 0
|
||||
int rootIterCount = 0;
|
||||
float a1 = t1, a2 = t2;
|
||||
for (; ; )
|
||||
{
|
||||
// Use a mix of the secant rule and bisection.
|
||||
float t;
|
||||
if ((rootIterCount & 1) != 0)
|
||||
{
|
||||
// Secant rule to improve convergence.
|
||||
t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Bisection to guarantee progress.
|
||||
t = 0.5f * (a1 + a2);
|
||||
}
|
||||
|
||||
float s = SeparationFunction.Evaluate(indexA, indexB, t);
|
||||
|
||||
if (Math.Abs(s - target) < tolerance)
|
||||
{
|
||||
// t2 holds a tentative value for t1
|
||||
t2 = t;
|
||||
break;
|
||||
}
|
||||
|
||||
// Ensure we continue to bracket the root.
|
||||
if (s > target)
|
||||
{
|
||||
a1 = t;
|
||||
s1 = s;
|
||||
}
|
||||
else
|
||||
{
|
||||
a2 = t;
|
||||
s2 = s;
|
||||
}
|
||||
|
||||
++rootIterCount;
|
||||
++TOIRootIters;
|
||||
|
||||
if (rootIterCount == 50)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
TOIMaxRootIters = Math.Max(TOIMaxRootIters, rootIterCount);
|
||||
|
||||
++pushBackIter;
|
||||
|
||||
if (pushBackIter == Settings.MaxPolygonVertices)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
++iter;
|
||||
++TOIIters;
|
||||
|
||||
if (done)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
if (iter == k_maxIterations)
|
||||
{
|
||||
// Root finder got stuck. Semi-victory.
|
||||
output.State = TOIOutputState.Failed;
|
||||
output.T = t1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
TOIMaxIters = Math.Max(TOIMaxIters, iter);
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user