500 lines
19 KiB
C#
500 lines
19 KiB
C#
|
/*
|
|||
|
* Farseer Physics Engine based on Box2D.XNA port:
|
|||
|
* Copyright (c) 2010 Ian Qvist
|
|||
|
*
|
|||
|
* Box2D.XNA port of Box2D:
|
|||
|
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
|||
|
*
|
|||
|
* Original source Box2D:
|
|||
|
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
|||
|
*
|
|||
|
* This software is provided 'as-is', without any express or implied
|
|||
|
* warranty. In no event will the authors be held liable for any damages
|
|||
|
* arising from the use of this software.
|
|||
|
* Permission is granted to anyone to use this software for any purpose,
|
|||
|
* including commercial applications, and to alter it and redistribute it
|
|||
|
* freely, subject to the following restrictions:
|
|||
|
* 1. The origin of this software must not be misrepresented; you must not
|
|||
|
* claim that you wrote the original software. If you use this software
|
|||
|
* in a product, an acknowledgment in the product documentation would be
|
|||
|
* appreciated but is not required.
|
|||
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|||
|
* misrepresented as being the original software.
|
|||
|
* 3. This notice may not be removed or altered from any source distribution.
|
|||
|
*/
|
|||
|
|
|||
|
using System;
|
|||
|
using System.Diagnostics;
|
|||
|
using FarseerPhysics.Common;
|
|||
|
using Microsoft.Xna.Framework;
|
|||
|
|
|||
|
namespace FarseerPhysics.Collision
|
|||
|
{
|
|||
|
/// <summary>
|
|||
|
/// Input parameters for CalculateTimeOfImpact
|
|||
|
/// </summary>
|
|||
|
public class TOIInput
|
|||
|
{
|
|||
|
public DistanceProxy ProxyA = new DistanceProxy();
|
|||
|
public DistanceProxy ProxyB = new DistanceProxy();
|
|||
|
public Sweep SweepA;
|
|||
|
public Sweep SweepB;
|
|||
|
public float TMax; // defines sweep interval [0, tMax]
|
|||
|
}
|
|||
|
|
|||
|
public enum TOIOutputState
|
|||
|
{
|
|||
|
Unknown,
|
|||
|
Failed,
|
|||
|
Overlapped,
|
|||
|
Touching,
|
|||
|
Seperated,
|
|||
|
}
|
|||
|
|
|||
|
public struct TOIOutput
|
|||
|
{
|
|||
|
public TOIOutputState State;
|
|||
|
public float T;
|
|||
|
}
|
|||
|
|
|||
|
public enum SeparationFunctionType
|
|||
|
{
|
|||
|
Points,
|
|||
|
FaceA,
|
|||
|
FaceB
|
|||
|
}
|
|||
|
|
|||
|
public static class SeparationFunction
|
|||
|
{
|
|||
|
private static Vector2 _axis;
|
|||
|
private static Vector2 _localPoint;
|
|||
|
private static DistanceProxy _proxyA = new DistanceProxy();
|
|||
|
private static DistanceProxy _proxyB = new DistanceProxy();
|
|||
|
private static Sweep _sweepA, _sweepB;
|
|||
|
private static SeparationFunctionType _type;
|
|||
|
|
|||
|
public static void Set(ref SimplexCache cache,
|
|||
|
DistanceProxy proxyA, ref Sweep sweepA,
|
|||
|
DistanceProxy proxyB, ref Sweep sweepB,
|
|||
|
float t1)
|
|||
|
{
|
|||
|
_localPoint = Vector2.Zero;
|
|||
|
_proxyA = proxyA;
|
|||
|
_proxyB = proxyB;
|
|||
|
int count = cache.Count;
|
|||
|
Debug.Assert(0 < count && count < 3);
|
|||
|
|
|||
|
_sweepA = sweepA;
|
|||
|
_sweepB = sweepB;
|
|||
|
|
|||
|
Transform xfA, xfB;
|
|||
|
_sweepA.GetTransform(out xfA, t1);
|
|||
|
_sweepB.GetTransform(out xfB, t1);
|
|||
|
|
|||
|
if (count == 1)
|
|||
|
{
|
|||
|
_type = SeparationFunctionType.Points;
|
|||
|
Vector2 localPointA = _proxyA.Vertices[cache.IndexA[0]];
|
|||
|
Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
|||
|
_axis = pointB - pointA;
|
|||
|
_axis.Normalize();
|
|||
|
return;
|
|||
|
}
|
|||
|
else if (cache.IndexA[0] == cache.IndexA[1])
|
|||
|
{
|
|||
|
// Two points on B and one on A.
|
|||
|
_type = SeparationFunctionType.FaceB;
|
|||
|
Vector2 localPointB1 = proxyB.Vertices[cache.IndexB[0]];
|
|||
|
Vector2 localPointB2 = proxyB.Vertices[cache.IndexB[1]];
|
|||
|
|
|||
|
Vector2 a = localPointB2 - localPointB1;
|
|||
|
_axis = new Vector2(a.Y, -a.X);
|
|||
|
_axis.Normalize();
|
|||
|
Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);
|
|||
|
|
|||
|
_localPoint = 0.5f * (localPointB1 + localPointB2);
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);
|
|||
|
|
|||
|
Vector2 localPointA = proxyA.Vertices[cache.IndexA[0]];
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
|||
|
|
|||
|
float s = Vector2.Dot(pointA - pointB, normal);
|
|||
|
if (s < 0.0f)
|
|||
|
{
|
|||
|
_axis = -_axis;
|
|||
|
s = -s;
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// Two points on A and one or two points on B.
|
|||
|
_type = SeparationFunctionType.FaceA;
|
|||
|
Vector2 localPointA1 = _proxyA.Vertices[cache.IndexA[0]];
|
|||
|
Vector2 localPointA2 = _proxyA.Vertices[cache.IndexA[1]];
|
|||
|
|
|||
|
Vector2 a = localPointA2 - localPointA1;
|
|||
|
_axis = new Vector2(a.Y, -a.X);
|
|||
|
_axis.Normalize();
|
|||
|
Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);
|
|||
|
|
|||
|
_localPoint = 0.5f * (localPointA1 + localPointA2);
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);
|
|||
|
|
|||
|
Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
|||
|
|
|||
|
float s = Vector2.Dot(pointB - pointA, normal);
|
|||
|
if (s < 0.0f)
|
|||
|
{
|
|||
|
_axis = -_axis;
|
|||
|
s = -s;
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static float FindMinSeparation(out int indexA, out int indexB, float t)
|
|||
|
{
|
|||
|
Transform xfA, xfB;
|
|||
|
_sweepA.GetTransform(out xfA, t);
|
|||
|
_sweepB.GetTransform(out xfB, t);
|
|||
|
|
|||
|
switch (_type)
|
|||
|
{
|
|||
|
case SeparationFunctionType.Points:
|
|||
|
{
|
|||
|
Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, _axis);
|
|||
|
Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -_axis);
|
|||
|
|
|||
|
indexA = _proxyA.GetSupport(axisA);
|
|||
|
indexB = _proxyB.GetSupport(axisB);
|
|||
|
|
|||
|
Vector2 localPointA = _proxyA.Vertices[indexA];
|
|||
|
Vector2 localPointB = _proxyB.Vertices[indexB];
|
|||
|
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
|||
|
|
|||
|
float separation = Vector2.Dot(pointB - pointA, _axis);
|
|||
|
return separation;
|
|||
|
}
|
|||
|
|
|||
|
case SeparationFunctionType.FaceA:
|
|||
|
{
|
|||
|
Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);
|
|||
|
|
|||
|
Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -normal);
|
|||
|
|
|||
|
indexA = -1;
|
|||
|
indexB = _proxyB.GetSupport(axisB);
|
|||
|
|
|||
|
Vector2 localPointB = _proxyB.Vertices[indexB];
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
|||
|
|
|||
|
float separation = Vector2.Dot(pointB - pointA, normal);
|
|||
|
return separation;
|
|||
|
}
|
|||
|
|
|||
|
case SeparationFunctionType.FaceB:
|
|||
|
{
|
|||
|
Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);
|
|||
|
|
|||
|
Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, -normal);
|
|||
|
|
|||
|
indexB = -1;
|
|||
|
indexA = _proxyA.GetSupport(axisA);
|
|||
|
|
|||
|
Vector2 localPointA = _proxyA.Vertices[indexA];
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
|||
|
|
|||
|
float separation = Vector2.Dot(pointA - pointB, normal);
|
|||
|
return separation;
|
|||
|
}
|
|||
|
|
|||
|
default:
|
|||
|
Debug.Assert(false);
|
|||
|
indexA = -1;
|
|||
|
indexB = -1;
|
|||
|
return 0.0f;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static float Evaluate(int indexA, int indexB, float t)
|
|||
|
{
|
|||
|
Transform xfA, xfB;
|
|||
|
_sweepA.GetTransform(out xfA, t);
|
|||
|
_sweepB.GetTransform(out xfB, t);
|
|||
|
|
|||
|
switch (_type)
|
|||
|
{
|
|||
|
case SeparationFunctionType.Points:
|
|||
|
{
|
|||
|
Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, _axis);
|
|||
|
Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -_axis);
|
|||
|
|
|||
|
Vector2 localPointA = _proxyA.Vertices[indexA];
|
|||
|
Vector2 localPointB = _proxyB.Vertices[indexB];
|
|||
|
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
|||
|
float separation = Vector2.Dot(pointB - pointA, _axis);
|
|||
|
|
|||
|
return separation;
|
|||
|
}
|
|||
|
|
|||
|
case SeparationFunctionType.FaceA:
|
|||
|
{
|
|||
|
Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);
|
|||
|
|
|||
|
Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -normal);
|
|||
|
|
|||
|
Vector2 localPointB = _proxyB.Vertices[indexB];
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
|
|||
|
|
|||
|
float separation = Vector2.Dot(pointB - pointA, normal);
|
|||
|
return separation;
|
|||
|
}
|
|||
|
|
|||
|
case SeparationFunctionType.FaceB:
|
|||
|
{
|
|||
|
Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);
|
|||
|
Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);
|
|||
|
|
|||
|
Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, -normal);
|
|||
|
|
|||
|
Vector2 localPointA = _proxyA.Vertices[indexA];
|
|||
|
Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
|
|||
|
|
|||
|
float separation = Vector2.Dot(pointA - pointB, normal);
|
|||
|
return separation;
|
|||
|
}
|
|||
|
|
|||
|
default:
|
|||
|
Debug.Assert(false);
|
|||
|
return 0.0f;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static class TimeOfImpact
|
|||
|
{
|
|||
|
// CCD via the local separating axis method. This seeks progression
|
|||
|
// by computing the largest time at which separation is maintained.
|
|||
|
|
|||
|
public static int TOICalls, TOIIters, TOIMaxIters;
|
|||
|
public static int TOIRootIters, TOIMaxRootIters;
|
|||
|
private static DistanceInput _distanceInput = new DistanceInput();
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Compute the upper bound on time before two shapes penetrate. Time is represented as
|
|||
|
/// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
|
|||
|
/// non-tunneling collision. If you change the time interval, you should call this function
|
|||
|
/// again.
|
|||
|
/// Note: use Distance() to compute the contact point and normal at the time of impact.
|
|||
|
/// </summary>
|
|||
|
/// <param name="output">The output.</param>
|
|||
|
/// <param name="input">The input.</param>
|
|||
|
public static void CalculateTimeOfImpact(out TOIOutput output, TOIInput input)
|
|||
|
{
|
|||
|
++TOICalls;
|
|||
|
|
|||
|
output = new TOIOutput();
|
|||
|
output.State = TOIOutputState.Unknown;
|
|||
|
output.T = input.TMax;
|
|||
|
|
|||
|
Sweep sweepA = input.SweepA;
|
|||
|
Sweep sweepB = input.SweepB;
|
|||
|
|
|||
|
// Large rotations can make the root finder fail, so we normalize the
|
|||
|
// sweep angles.
|
|||
|
sweepA.Normalize();
|
|||
|
sweepB.Normalize();
|
|||
|
|
|||
|
float tMax = input.TMax;
|
|||
|
|
|||
|
float totalRadius = input.ProxyA.Radius + input.ProxyB.Radius;
|
|||
|
float target = Math.Max(Settings.LinearSlop, totalRadius - 3.0f * Settings.LinearSlop);
|
|||
|
const float tolerance = 0.25f * Settings.LinearSlop;
|
|||
|
Debug.Assert(target > tolerance);
|
|||
|
|
|||
|
float t1 = 0.0f;
|
|||
|
const int k_maxIterations = 20;
|
|||
|
int iter = 0;
|
|||
|
|
|||
|
// Prepare input for distance query.
|
|||
|
SimplexCache cache;
|
|||
|
_distanceInput.ProxyA = input.ProxyA;
|
|||
|
_distanceInput.ProxyB = input.ProxyB;
|
|||
|
_distanceInput.UseRadii = false;
|
|||
|
|
|||
|
// The outer loop progressively attempts to compute new separating axes.
|
|||
|
// This loop terminates when an axis is repeated (no progress is made).
|
|||
|
for (; ; )
|
|||
|
{
|
|||
|
Transform xfA, xfB;
|
|||
|
sweepA.GetTransform(out xfA, t1);
|
|||
|
sweepB.GetTransform(out xfB, t1);
|
|||
|
|
|||
|
// Get the distance between shapes. We can also use the results
|
|||
|
// to get a separating axis.
|
|||
|
_distanceInput.TransformA = xfA;
|
|||
|
_distanceInput.TransformB = xfB;
|
|||
|
DistanceOutput distanceOutput;
|
|||
|
Distance.ComputeDistance(out distanceOutput, out cache, _distanceInput);
|
|||
|
|
|||
|
// If the shapes are overlapped, we give up on continuous collision.
|
|||
|
if (distanceOutput.Distance <= 0.0f)
|
|||
|
{
|
|||
|
// Failure!
|
|||
|
output.State = TOIOutputState.Overlapped;
|
|||
|
output.T = 0.0f;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (distanceOutput.Distance < target + tolerance)
|
|||
|
{
|
|||
|
// Victory!
|
|||
|
output.State = TOIOutputState.Touching;
|
|||
|
output.T = t1;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
SeparationFunction.Set(ref cache, input.ProxyA, ref sweepA, input.ProxyB, ref sweepB, t1);
|
|||
|
|
|||
|
// Compute the TOI on the separating axis. We do this by successively
|
|||
|
// resolving the deepest point. This loop is bounded by the number of vertices.
|
|||
|
bool done = false;
|
|||
|
float t2 = tMax;
|
|||
|
int pushBackIter = 0;
|
|||
|
for (; ; )
|
|||
|
{
|
|||
|
// Find the deepest point at t2. Store the witness point indices.
|
|||
|
int indexA, indexB;
|
|||
|
float s2 = SeparationFunction.FindMinSeparation(out indexA, out indexB, t2);
|
|||
|
|
|||
|
// Is the final configuration separated?
|
|||
|
if (s2 > target + tolerance)
|
|||
|
{
|
|||
|
// Victory!
|
|||
|
output.State = TOIOutputState.Seperated;
|
|||
|
output.T = tMax;
|
|||
|
done = true;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
// Has the separation reached tolerance?
|
|||
|
if (s2 > target - tolerance)
|
|||
|
{
|
|||
|
// Advance the sweeps
|
|||
|
t1 = t2;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
// Compute the initial separation of the witness points.
|
|||
|
float s1 = SeparationFunction.Evaluate(indexA, indexB, t1);
|
|||
|
|
|||
|
// Check for initial overlap. This might happen if the root finder
|
|||
|
// runs out of iterations.
|
|||
|
if (s1 < target - tolerance)
|
|||
|
{
|
|||
|
output.State = TOIOutputState.Failed;
|
|||
|
output.T = t1;
|
|||
|
done = true;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
// Check for touching
|
|||
|
if (s1 <= target + tolerance)
|
|||
|
{
|
|||
|
// Victory! t1 should hold the TOI (could be 0.0).
|
|||
|
output.State = TOIOutputState.Touching;
|
|||
|
output.T = t1;
|
|||
|
done = true;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
// Compute 1D root of: f(x) - target = 0
|
|||
|
int rootIterCount = 0;
|
|||
|
float a1 = t1, a2 = t2;
|
|||
|
for (; ; )
|
|||
|
{
|
|||
|
// Use a mix of the secant rule and bisection.
|
|||
|
float t;
|
|||
|
if ((rootIterCount & 1) != 0)
|
|||
|
{
|
|||
|
// Secant rule to improve convergence.
|
|||
|
t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
// Bisection to guarantee progress.
|
|||
|
t = 0.5f * (a1 + a2);
|
|||
|
}
|
|||
|
|
|||
|
float s = SeparationFunction.Evaluate(indexA, indexB, t);
|
|||
|
|
|||
|
if (Math.Abs(s - target) < tolerance)
|
|||
|
{
|
|||
|
// t2 holds a tentative value for t1
|
|||
|
t2 = t;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
// Ensure we continue to bracket the root.
|
|||
|
if (s > target)
|
|||
|
{
|
|||
|
a1 = t;
|
|||
|
s1 = s;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
a2 = t;
|
|||
|
s2 = s;
|
|||
|
}
|
|||
|
|
|||
|
++rootIterCount;
|
|||
|
++TOIRootIters;
|
|||
|
|
|||
|
if (rootIterCount == 50)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
TOIMaxRootIters = Math.Max(TOIMaxRootIters, rootIterCount);
|
|||
|
|
|||
|
++pushBackIter;
|
|||
|
|
|||
|
if (pushBackIter == Settings.MaxPolygonVertices)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
++iter;
|
|||
|
++TOIIters;
|
|||
|
|
|||
|
if (done)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (iter == k_maxIterations)
|
|||
|
{
|
|||
|
// Root finder got stuck. Semi-victory.
|
|||
|
output.State = TOIOutputState.Failed;
|
|||
|
output.T = t1;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
TOIMaxIters = Math.Max(TOIMaxIters, iter);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|