253 lines
10 KiB
C#
253 lines
10 KiB
C#
|
using System.Collections.Generic;
|
|||
|
using FarseerPhysics.Common.PolygonManipulation;
|
|||
|
using Microsoft.Xna.Framework;
|
|||
|
|
|||
|
namespace FarseerPhysics.Common.Decomposition
|
|||
|
{
|
|||
|
//From phed rev 36
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Convex decomposition algorithm created by Mark Bayazit (http://mnbayazit.com/)
|
|||
|
/// For more information about this algorithm, see http://mnbayazit.com/406/bayazit
|
|||
|
/// </summary>
|
|||
|
public static class BayazitDecomposer
|
|||
|
{
|
|||
|
private static Vector2 At(int i, Vertices vertices)
|
|||
|
{
|
|||
|
int s = vertices.Count;
|
|||
|
return vertices[i < 0 ? s - (-i % s) : i % s];
|
|||
|
}
|
|||
|
|
|||
|
private static Vertices Copy(int i, int j, Vertices vertices)
|
|||
|
{
|
|||
|
Vertices p = new Vertices();
|
|||
|
while (j < i) j += vertices.Count;
|
|||
|
//p.reserve(j - i + 1);
|
|||
|
for (; i <= j; ++i)
|
|||
|
{
|
|||
|
p.Add(At(i, vertices));
|
|||
|
}
|
|||
|
return p;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Decompose the polygon into several smaller non-concave polygon.
|
|||
|
/// If the polygon is already convex, it will return the original polygon, unless it is over Settings.MaxPolygonVertices.
|
|||
|
/// Precondition: Counter Clockwise polygon
|
|||
|
/// </summary>
|
|||
|
/// <param name="vertices"></param>
|
|||
|
/// <returns></returns>
|
|||
|
public static List<Vertices> ConvexPartition(Vertices vertices)
|
|||
|
{
|
|||
|
//We force it to CCW as it is a precondition in this algorithm.
|
|||
|
vertices.ForceCounterClockWise();
|
|||
|
|
|||
|
List<Vertices> list = new List<Vertices>();
|
|||
|
float d, lowerDist, upperDist;
|
|||
|
Vector2 p;
|
|||
|
Vector2 lowerInt = new Vector2();
|
|||
|
Vector2 upperInt = new Vector2(); // intersection points
|
|||
|
int lowerIndex = 0, upperIndex = 0;
|
|||
|
Vertices lowerPoly, upperPoly;
|
|||
|
|
|||
|
for (int i = 0; i < vertices.Count; ++i)
|
|||
|
{
|
|||
|
if (Reflex(i, vertices))
|
|||
|
{
|
|||
|
lowerDist = upperDist = float.MaxValue; // std::numeric_limits<qreal>::max();
|
|||
|
for (int j = 0; j < vertices.Count; ++j)
|
|||
|
{
|
|||
|
// if line intersects with an edge
|
|||
|
if (Left(At(i - 1, vertices), At(i, vertices), At(j, vertices)) &&
|
|||
|
RightOn(At(i - 1, vertices), At(i, vertices), At(j - 1, vertices)))
|
|||
|
{
|
|||
|
// find the point of intersection
|
|||
|
p = LineTools.LineIntersect(At(i - 1, vertices), At(i, vertices), At(j, vertices),
|
|||
|
At(j - 1, vertices));
|
|||
|
if (Right(At(i + 1, vertices), At(i, vertices), p))
|
|||
|
{
|
|||
|
// make sure it's inside the poly
|
|||
|
d = SquareDist(At(i, vertices), p);
|
|||
|
if (d < lowerDist)
|
|||
|
{
|
|||
|
// keep only the closest intersection
|
|||
|
lowerDist = d;
|
|||
|
lowerInt = p;
|
|||
|
lowerIndex = j;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (Left(At(i + 1, vertices), At(i, vertices), At(j + 1, vertices)) &&
|
|||
|
RightOn(At(i + 1, vertices), At(i, vertices), At(j, vertices)))
|
|||
|
{
|
|||
|
p = LineTools.LineIntersect(At(i + 1, vertices), At(i, vertices), At(j, vertices),
|
|||
|
At(j + 1, vertices));
|
|||
|
if (Left(At(i - 1, vertices), At(i, vertices), p))
|
|||
|
{
|
|||
|
d = SquareDist(At(i, vertices), p);
|
|||
|
if (d < upperDist)
|
|||
|
{
|
|||
|
upperDist = d;
|
|||
|
upperIndex = j;
|
|||
|
upperInt = p;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// if there are no vertices to connect to, choose a point in the middle
|
|||
|
if (lowerIndex == (upperIndex + 1) % vertices.Count)
|
|||
|
{
|
|||
|
Vector2 sp = ((lowerInt + upperInt) / 2);
|
|||
|
|
|||
|
lowerPoly = Copy(i, upperIndex, vertices);
|
|||
|
lowerPoly.Add(sp);
|
|||
|
upperPoly = Copy(lowerIndex, i, vertices);
|
|||
|
upperPoly.Add(sp);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
double highestScore = 0, bestIndex = lowerIndex;
|
|||
|
while (upperIndex < lowerIndex) upperIndex += vertices.Count;
|
|||
|
for (int j = lowerIndex; j <= upperIndex; ++j)
|
|||
|
{
|
|||
|
if (CanSee(i, j, vertices))
|
|||
|
{
|
|||
|
double score = 1 / (SquareDist(At(i, vertices), At(j, vertices)) + 1);
|
|||
|
if (Reflex(j, vertices))
|
|||
|
{
|
|||
|
if (RightOn(At(j - 1, vertices), At(j, vertices), At(i, vertices)) &&
|
|||
|
LeftOn(At(j + 1, vertices), At(j, vertices), At(i, vertices)))
|
|||
|
{
|
|||
|
score += 3;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
score += 2;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
score += 1;
|
|||
|
}
|
|||
|
if (score > highestScore)
|
|||
|
{
|
|||
|
bestIndex = j;
|
|||
|
highestScore = score;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
lowerPoly = Copy(i, (int)bestIndex, vertices);
|
|||
|
upperPoly = Copy((int)bestIndex, i, vertices);
|
|||
|
}
|
|||
|
list.AddRange(ConvexPartition(lowerPoly));
|
|||
|
list.AddRange(ConvexPartition(upperPoly));
|
|||
|
return list;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// polygon is already convex
|
|||
|
if (vertices.Count > Settings.MaxPolygonVertices)
|
|||
|
{
|
|||
|
lowerPoly = Copy(0, vertices.Count / 2, vertices);
|
|||
|
upperPoly = Copy(vertices.Count / 2, 0, vertices);
|
|||
|
list.AddRange(ConvexPartition(lowerPoly));
|
|||
|
list.AddRange(ConvexPartition(upperPoly));
|
|||
|
}
|
|||
|
else
|
|||
|
list.Add(vertices);
|
|||
|
|
|||
|
//The polygons are not guaranteed to be without collinear points. We remove
|
|||
|
//them to be sure.
|
|||
|
for (int i = 0; i < list.Count; i++)
|
|||
|
{
|
|||
|
list[i] = SimplifyTools.CollinearSimplify(list[i], 0);
|
|||
|
}
|
|||
|
|
|||
|
//Remove empty vertice collections
|
|||
|
for (int i = list.Count - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (list[i].Count == 0)
|
|||
|
list.RemoveAt(i);
|
|||
|
}
|
|||
|
|
|||
|
return list;
|
|||
|
}
|
|||
|
|
|||
|
private static bool CanSee(int i, int j, Vertices vertices)
|
|||
|
{
|
|||
|
if (Reflex(i, vertices))
|
|||
|
{
|
|||
|
if (LeftOn(At(i, vertices), At(i - 1, vertices), At(j, vertices)) &&
|
|||
|
RightOn(At(i, vertices), At(i + 1, vertices), At(j, vertices))) return false;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
if (RightOn(At(i, vertices), At(i + 1, vertices), At(j, vertices)) ||
|
|||
|
LeftOn(At(i, vertices), At(i - 1, vertices), At(j, vertices))) return false;
|
|||
|
}
|
|||
|
if (Reflex(j, vertices))
|
|||
|
{
|
|||
|
if (LeftOn(At(j, vertices), At(j - 1, vertices), At(i, vertices)) &&
|
|||
|
RightOn(At(j, vertices), At(j + 1, vertices), At(i, vertices))) return false;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
if (RightOn(At(j, vertices), At(j + 1, vertices), At(i, vertices)) ||
|
|||
|
LeftOn(At(j, vertices), At(j - 1, vertices), At(i, vertices))) return false;
|
|||
|
}
|
|||
|
for (int k = 0; k < vertices.Count; ++k)
|
|||
|
{
|
|||
|
if ((k + 1) % vertices.Count == i || k == i || (k + 1) % vertices.Count == j || k == j)
|
|||
|
{
|
|||
|
continue; // ignore incident edges
|
|||
|
}
|
|||
|
Vector2 intersectionPoint;
|
|||
|
if (LineTools.LineIntersect(At(i, vertices), At(j, vertices), At(k, vertices), At(k + 1, vertices), out intersectionPoint))
|
|||
|
{
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
// precondition: ccw
|
|||
|
private static bool Reflex(int i, Vertices vertices)
|
|||
|
{
|
|||
|
return Right(i, vertices);
|
|||
|
}
|
|||
|
|
|||
|
private static bool Right(int i, Vertices vertices)
|
|||
|
{
|
|||
|
return Right(At(i - 1, vertices), At(i, vertices), At(i + 1, vertices));
|
|||
|
}
|
|||
|
|
|||
|
private static bool Left(Vector2 a, Vector2 b, Vector2 c)
|
|||
|
{
|
|||
|
return MathUtils.Area(ref a, ref b, ref c) > 0;
|
|||
|
}
|
|||
|
|
|||
|
private static bool LeftOn(Vector2 a, Vector2 b, Vector2 c)
|
|||
|
{
|
|||
|
return MathUtils.Area(ref a, ref b, ref c) >= 0;
|
|||
|
}
|
|||
|
|
|||
|
private static bool Right(Vector2 a, Vector2 b, Vector2 c)
|
|||
|
{
|
|||
|
return MathUtils.Area(ref a, ref b, ref c) < 0;
|
|||
|
}
|
|||
|
|
|||
|
private static bool RightOn(Vector2 a, Vector2 b, Vector2 c)
|
|||
|
{
|
|||
|
return MathUtils.Area(ref a, ref b, ref c) <= 0;
|
|||
|
}
|
|||
|
|
|||
|
private static float SquareDist(Vector2 a, Vector2 b)
|
|||
|
{
|
|||
|
float dx = b.X - a.X;
|
|||
|
float dy = b.Y - a.Y;
|
|||
|
return dx * dx + dy * dy;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|