209 lines
7.2 KiB
C#
209 lines
7.2 KiB
C#
|
/*
|
||
|
* Farseer Physics Engine based on Box2D.XNA port:
|
||
|
* Copyright (c) 2010 Ian Qvist
|
||
|
*
|
||
|
* Box2D.XNA port of Box2D:
|
||
|
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
||
|
*
|
||
|
* Original source Box2D:
|
||
|
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||
|
*
|
||
|
* This software is provided 'as-is', without any express or implied
|
||
|
* warranty. In no event will the authors be held liable for any damages
|
||
|
* arising from the use of this software.
|
||
|
* Permission is granted to anyone to use this software for any purpose,
|
||
|
* including commercial applications, and to alter it and redistribute it
|
||
|
* freely, subject to the following restrictions:
|
||
|
* 1. The origin of this software must not be misrepresented; you must not
|
||
|
* claim that you wrote the original software. If you use this software
|
||
|
* in a product, an acknowledgment in the product documentation would be
|
||
|
* appreciated but is not required.
|
||
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
||
|
* misrepresented as being the original software.
|
||
|
* 3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
using System.Diagnostics;
|
||
|
using FarseerPhysics.Common;
|
||
|
using Microsoft.Xna.Framework;
|
||
|
|
||
|
namespace FarseerPhysics.Dynamics.Joints
|
||
|
{
|
||
|
/// <summary>
|
||
|
/// A mouse joint is used to make a point on a body track a
|
||
|
/// specified world point. This a soft constraint with a maximum
|
||
|
/// force. This allows the constraint to stretch and without
|
||
|
/// applying huge forces.
|
||
|
/// NOTE: this joint is not documented in the manual because it was
|
||
|
/// developed to be used in the testbed. If you want to learn how to
|
||
|
/// use the mouse joint, look at the testbed.
|
||
|
/// </summary>
|
||
|
public class FixedMouseJoint : Joint
|
||
|
{
|
||
|
public Vector2 LocalAnchorA;
|
||
|
private Vector2 _C; // position error
|
||
|
private float _beta;
|
||
|
private float _gamma;
|
||
|
private Vector2 _impulse;
|
||
|
private Mat22 _mass; // effective mass for point-to-point constraint.
|
||
|
|
||
|
private Vector2 _worldAnchor;
|
||
|
|
||
|
/// <summary>
|
||
|
/// This requires a world target point,
|
||
|
/// tuning parameters, and the time step.
|
||
|
/// </summary>
|
||
|
/// <param name="body">The body.</param>
|
||
|
/// <param name="worldAnchor">The target.</param>
|
||
|
public FixedMouseJoint(Body body, Vector2 worldAnchor)
|
||
|
: base(body)
|
||
|
{
|
||
|
JointType = JointType.FixedMouse;
|
||
|
Frequency = 5.0f;
|
||
|
DampingRatio = 0.7f;
|
||
|
|
||
|
Debug.Assert(worldAnchor.IsValid());
|
||
|
|
||
|
Transform xf1;
|
||
|
BodyA.GetTransform(out xf1);
|
||
|
|
||
|
_worldAnchor = worldAnchor;
|
||
|
LocalAnchorA = BodyA.GetLocalPoint(worldAnchor);
|
||
|
}
|
||
|
|
||
|
public override Vector2 WorldAnchorA
|
||
|
{
|
||
|
get { return BodyA.GetWorldPoint(LocalAnchorA); }
|
||
|
}
|
||
|
|
||
|
public override Vector2 WorldAnchorB
|
||
|
{
|
||
|
get { return _worldAnchor; }
|
||
|
set
|
||
|
{
|
||
|
BodyA.Awake = true;
|
||
|
_worldAnchor = value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// The maximum constraint force that can be exerted
|
||
|
/// to move the candidate body. Usually you will express
|
||
|
/// as some multiple of the weight (multiplier * mass * gravity).
|
||
|
/// </summary>
|
||
|
public float MaxForce { get; set; }
|
||
|
|
||
|
/// <summary>
|
||
|
/// The response speed.
|
||
|
/// </summary>
|
||
|
public float Frequency { get; set; }
|
||
|
|
||
|
/// <summary>
|
||
|
/// The damping ratio. 0 = no damping, 1 = critical damping.
|
||
|
/// </summary>
|
||
|
public float DampingRatio { get; set; }
|
||
|
|
||
|
public override Vector2 GetReactionForce(float inv_dt)
|
||
|
{
|
||
|
return inv_dt * _impulse;
|
||
|
}
|
||
|
|
||
|
public override float GetReactionTorque(float inv_dt)
|
||
|
{
|
||
|
return inv_dt * 0.0f;
|
||
|
}
|
||
|
|
||
|
internal override void InitVelocityConstraints(ref TimeStep step)
|
||
|
{
|
||
|
Body b = BodyA;
|
||
|
|
||
|
float mass = b.Mass;
|
||
|
|
||
|
// Frequency
|
||
|
float omega = 2.0f * Settings.Pi * Frequency;
|
||
|
|
||
|
// Damping coefficient
|
||
|
float d = 2.0f * mass * DampingRatio * omega;
|
||
|
|
||
|
// Spring stiffness
|
||
|
float k = mass * (omega * omega);
|
||
|
|
||
|
// magic formulas
|
||
|
// gamma has units of inverse mass.
|
||
|
// beta has units of inverse time.
|
||
|
Debug.Assert(d + step.dt * k > Settings.Epsilon);
|
||
|
|
||
|
_gamma = step.dt * (d + step.dt * k);
|
||
|
if (_gamma != 0.0f)
|
||
|
{
|
||
|
_gamma = 1.0f / _gamma;
|
||
|
}
|
||
|
|
||
|
_beta = step.dt * k * _gamma;
|
||
|
|
||
|
// Compute the effective mass matrix.
|
||
|
Transform xf1;
|
||
|
b.GetTransform(out xf1);
|
||
|
Vector2 r = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b.LocalCenter);
|
||
|
|
||
|
// K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
|
||
|
// = [1/m1+1/m2 0 ] + invI1 * [r1.Y*r1.Y -r1.X*r1.Y] + invI2 * [r1.Y*r1.Y -r1.X*r1.Y]
|
||
|
// [ 0 1/m1+1/m2] [-r1.X*r1.Y r1.X*r1.X] [-r1.X*r1.Y r1.X*r1.X]
|
||
|
float invMass = b.InvMass;
|
||
|
float invI = b.InvI;
|
||
|
|
||
|
Mat22 K1 = new Mat22(new Vector2(invMass, 0.0f), new Vector2(0.0f, invMass));
|
||
|
Mat22 K2 = new Mat22(new Vector2(invI * r.Y * r.Y, -invI * r.X * r.Y),
|
||
|
new Vector2(-invI * r.X * r.Y, invI * r.X * r.X));
|
||
|
|
||
|
Mat22 K;
|
||
|
Mat22.Add(ref K1, ref K2, out K);
|
||
|
|
||
|
K.Col1.X += _gamma;
|
||
|
K.Col2.Y += _gamma;
|
||
|
|
||
|
_mass = K.Inverse;
|
||
|
|
||
|
_C = b.Sweep.C + r - _worldAnchor;
|
||
|
|
||
|
// Cheat with some damping
|
||
|
b.AngularVelocityInternal *= 0.98f;
|
||
|
|
||
|
// Warm starting.
|
||
|
_impulse *= step.dtRatio;
|
||
|
b.LinearVelocityInternal += invMass * _impulse;
|
||
|
b.AngularVelocityInternal += invI * MathUtils.Cross(r, _impulse);
|
||
|
}
|
||
|
|
||
|
internal override void SolveVelocityConstraints(ref TimeStep step)
|
||
|
{
|
||
|
Body b = BodyA;
|
||
|
|
||
|
Transform xf1;
|
||
|
b.GetTransform(out xf1);
|
||
|
|
||
|
Vector2 r = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b.LocalCenter);
|
||
|
|
||
|
// Cdot = v + cross(w, r)
|
||
|
Vector2 Cdot = b.LinearVelocityInternal + MathUtils.Cross(b.AngularVelocityInternal, r);
|
||
|
Vector2 impulse = MathUtils.Multiply(ref _mass, -(Cdot + _beta * _C + _gamma * _impulse));
|
||
|
|
||
|
Vector2 oldImpulse = _impulse;
|
||
|
_impulse += impulse;
|
||
|
float maxImpulse = step.dt * MaxForce;
|
||
|
if (_impulse.LengthSquared() > maxImpulse * maxImpulse)
|
||
|
{
|
||
|
_impulse *= maxImpulse / _impulse.Length();
|
||
|
}
|
||
|
impulse = _impulse - oldImpulse;
|
||
|
|
||
|
b.LinearVelocityInternal += b.InvMass * impulse;
|
||
|
b.AngularVelocityInternal += b.InvI * MathUtils.Cross(r, impulse);
|
||
|
}
|
||
|
|
||
|
internal override bool SolvePositionConstraints()
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|