359 lines
12 KiB
C#
359 lines
12 KiB
C#
|
using System;
|
|||
|
using System.Collections.Generic;
|
|||
|
using System.Diagnostics;
|
|||
|
using Microsoft.Xna.Framework;
|
|||
|
|
|||
|
namespace FarseerPhysics.Common.PolygonManipulation
|
|||
|
{
|
|||
|
public static class SimplifyTools
|
|||
|
{
|
|||
|
private static bool[] _usePt;
|
|||
|
private static double _distanceTolerance;
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Removes all collinear points on the polygon.
|
|||
|
/// </summary>
|
|||
|
/// <param name="vertices">The polygon that needs simplification.</param>
|
|||
|
/// <param name="collinearityTolerance">The collinearity tolerance.</param>
|
|||
|
/// <returns>A simplified polygon.</returns>
|
|||
|
public static Vertices CollinearSimplify(Vertices vertices, float collinearityTolerance)
|
|||
|
{
|
|||
|
//We can't simplify polygons under 3 vertices
|
|||
|
if (vertices.Count < 3)
|
|||
|
return vertices;
|
|||
|
|
|||
|
Vertices simplified = new Vertices();
|
|||
|
|
|||
|
for (int i = 0; i < vertices.Count; i++)
|
|||
|
{
|
|||
|
int prevId = vertices.PreviousIndex(i);
|
|||
|
int nextId = vertices.NextIndex(i);
|
|||
|
|
|||
|
Vector2 prev = vertices[prevId];
|
|||
|
Vector2 current = vertices[i];
|
|||
|
Vector2 next = vertices[nextId];
|
|||
|
|
|||
|
//If they collinear, continue
|
|||
|
if (MathUtils.Collinear(ref prev, ref current, ref next, collinearityTolerance))
|
|||
|
continue;
|
|||
|
|
|||
|
simplified.Add(current);
|
|||
|
}
|
|||
|
|
|||
|
return simplified;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Removes all collinear points on the polygon.
|
|||
|
/// Has a default bias of 0
|
|||
|
/// </summary>
|
|||
|
/// <param name="vertices">The polygon that needs simplification.</param>
|
|||
|
/// <returns>A simplified polygon.</returns>
|
|||
|
public static Vertices CollinearSimplify(Vertices vertices)
|
|||
|
{
|
|||
|
return CollinearSimplify(vertices, 0);
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Ramer-Douglas-Peucker polygon simplification algorithm. This is the general recursive version that does not use the
|
|||
|
/// speed-up technique by using the Melkman convex hull.
|
|||
|
///
|
|||
|
/// If you pass in 0, it will remove all collinear points
|
|||
|
/// </summary>
|
|||
|
/// <returns>The simplified polygon</returns>
|
|||
|
public static Vertices DouglasPeuckerSimplify(Vertices vertices, float distanceTolerance)
|
|||
|
{
|
|||
|
_distanceTolerance = distanceTolerance;
|
|||
|
|
|||
|
_usePt = new bool[vertices.Count];
|
|||
|
for (int i = 0; i < vertices.Count; i++)
|
|||
|
_usePt[i] = true;
|
|||
|
|
|||
|
SimplifySection(vertices, 0, vertices.Count - 1);
|
|||
|
Vertices result = new Vertices();
|
|||
|
|
|||
|
for (int i = 0; i < vertices.Count; i++)
|
|||
|
if (_usePt[i])
|
|||
|
result.Add(vertices[i]);
|
|||
|
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
private static void SimplifySection(Vertices vertices, int i, int j)
|
|||
|
{
|
|||
|
if ((i + 1) == j)
|
|||
|
return;
|
|||
|
|
|||
|
Vector2 A = vertices[i];
|
|||
|
Vector2 B = vertices[j];
|
|||
|
double maxDistance = -1.0;
|
|||
|
int maxIndex = i;
|
|||
|
for (int k = i + 1; k < j; k++)
|
|||
|
{
|
|||
|
double distance = DistancePointLine(vertices[k], A, B);
|
|||
|
|
|||
|
if (distance > maxDistance)
|
|||
|
{
|
|||
|
maxDistance = distance;
|
|||
|
maxIndex = k;
|
|||
|
}
|
|||
|
}
|
|||
|
if (maxDistance <= _distanceTolerance)
|
|||
|
for (int k = i + 1; k < j; k++)
|
|||
|
_usePt[k] = false;
|
|||
|
else
|
|||
|
{
|
|||
|
SimplifySection(vertices, i, maxIndex);
|
|||
|
SimplifySection(vertices, maxIndex, j);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
private static double DistancePointPoint(Vector2 p, Vector2 p2)
|
|||
|
{
|
|||
|
double dx = p.X - p2.X;
|
|||
|
double dy = p.Y - p2.X;
|
|||
|
return Math.Sqrt(dx * dx + dy * dy);
|
|||
|
}
|
|||
|
|
|||
|
private static double DistancePointLine(Vector2 p, Vector2 A, Vector2 B)
|
|||
|
{
|
|||
|
// if start == end, then use point-to-point distance
|
|||
|
if (A.X == B.X && A.Y == B.Y)
|
|||
|
return DistancePointPoint(p, A);
|
|||
|
|
|||
|
// otherwise use comp.graphics.algorithms Frequently Asked Questions method
|
|||
|
/*(1) AC dot AB
|
|||
|
r = ---------
|
|||
|
||AB||^2
|
|||
|
|
|||
|
r has the following meaning:
|
|||
|
r=0 Point = A
|
|||
|
r=1 Point = B
|
|||
|
r<0 Point is on the backward extension of AB
|
|||
|
r>1 Point is on the forward extension of AB
|
|||
|
0<r<1 Point is interior to AB
|
|||
|
*/
|
|||
|
|
|||
|
double r = ((p.X - A.X) * (B.X - A.X) + (p.Y - A.Y) * (B.Y - A.Y))
|
|||
|
/
|
|||
|
((B.X - A.X) * (B.X - A.X) + (B.Y - A.Y) * (B.Y - A.Y));
|
|||
|
|
|||
|
if (r <= 0.0) return DistancePointPoint(p, A);
|
|||
|
if (r >= 1.0) return DistancePointPoint(p, B);
|
|||
|
|
|||
|
|
|||
|
/*(2)
|
|||
|
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
|
|||
|
s = -----------------------------
|
|||
|
Curve^2
|
|||
|
|
|||
|
Then the distance from C to Point = |s|*Curve.
|
|||
|
*/
|
|||
|
|
|||
|
double s = ((A.Y - p.Y) * (B.X - A.X) - (A.X - p.X) * (B.Y - A.Y))
|
|||
|
/
|
|||
|
((B.X - A.X) * (B.X - A.X) + (B.Y - A.Y) * (B.Y - A.Y));
|
|||
|
|
|||
|
return Math.Abs(s) * Math.Sqrt(((B.X - A.X) * (B.X - A.X) + (B.Y - A.Y) * (B.Y - A.Y)));
|
|||
|
}
|
|||
|
|
|||
|
//From physics2d.net
|
|||
|
public static Vertices ReduceByArea(Vertices vertices, float areaTolerance)
|
|||
|
{
|
|||
|
if (vertices.Count <= 3)
|
|||
|
return vertices;
|
|||
|
|
|||
|
if (areaTolerance < 0)
|
|||
|
{
|
|||
|
throw new ArgumentOutOfRangeException("areaTolerance", "must be equal to or greater then zero.");
|
|||
|
}
|
|||
|
|
|||
|
Vertices result = new Vertices();
|
|||
|
Vector2 v1, v2, v3;
|
|||
|
float old1, old2, new1;
|
|||
|
v1 = vertices[vertices.Count - 2];
|
|||
|
v2 = vertices[vertices.Count - 1];
|
|||
|
areaTolerance *= 2;
|
|||
|
for (int index = 0; index < vertices.Count; ++index, v2 = v3)
|
|||
|
{
|
|||
|
if (index == vertices.Count - 1)
|
|||
|
{
|
|||
|
if (result.Count == 0)
|
|||
|
{
|
|||
|
throw new ArgumentOutOfRangeException("areaTolerance", "The tolerance is too high!");
|
|||
|
}
|
|||
|
v3 = result[0];
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
v3 = vertices[index];
|
|||
|
}
|
|||
|
MathUtils.Cross(ref v1, ref v2, out old1);
|
|||
|
MathUtils.Cross(ref v2, ref v3, out old2);
|
|||
|
MathUtils.Cross(ref v1, ref v3, out new1);
|
|||
|
if (Math.Abs(new1 - (old1 + old2)) > areaTolerance)
|
|||
|
{
|
|||
|
result.Add(v2);
|
|||
|
v1 = v2;
|
|||
|
}
|
|||
|
}
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
//From Eric Jordan's convex decomposition library
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Merges all parallel edges in the list of vertices
|
|||
|
/// </summary>
|
|||
|
/// <param name="vertices">The vertices.</param>
|
|||
|
/// <param name="tolerance">The tolerance.</param>
|
|||
|
public static void MergeParallelEdges(Vertices vertices, float tolerance)
|
|||
|
{
|
|||
|
if (vertices.Count <= 3)
|
|||
|
return; //Can't do anything useful here to a triangle
|
|||
|
|
|||
|
bool[] mergeMe = new bool[vertices.Count];
|
|||
|
int newNVertices = vertices.Count;
|
|||
|
|
|||
|
//Gather points to process
|
|||
|
for (int i = 0; i < vertices.Count; ++i)
|
|||
|
{
|
|||
|
int lower = (i == 0) ? (vertices.Count - 1) : (i - 1);
|
|||
|
int middle = i;
|
|||
|
int upper = (i == vertices.Count - 1) ? (0) : (i + 1);
|
|||
|
|
|||
|
float dx0 = vertices[middle].X - vertices[lower].X;
|
|||
|
float dy0 = vertices[middle].Y - vertices[lower].Y;
|
|||
|
float dx1 = vertices[upper].Y - vertices[middle].X;
|
|||
|
float dy1 = vertices[upper].Y - vertices[middle].Y;
|
|||
|
float norm0 = (float)Math.Sqrt(dx0 * dx0 + dy0 * dy0);
|
|||
|
float norm1 = (float)Math.Sqrt(dx1 * dx1 + dy1 * dy1);
|
|||
|
|
|||
|
if (!(norm0 > 0.0f && norm1 > 0.0f) && newNVertices > 3)
|
|||
|
{
|
|||
|
//Merge identical points
|
|||
|
mergeMe[i] = true;
|
|||
|
--newNVertices;
|
|||
|
}
|
|||
|
|
|||
|
dx0 /= norm0;
|
|||
|
dy0 /= norm0;
|
|||
|
dx1 /= norm1;
|
|||
|
dy1 /= norm1;
|
|||
|
float cross = dx0 * dy1 - dx1 * dy0;
|
|||
|
float dot = dx0 * dx1 + dy0 * dy1;
|
|||
|
|
|||
|
if (Math.Abs(cross) < tolerance && dot > 0 && newNVertices > 3)
|
|||
|
{
|
|||
|
mergeMe[i] = true;
|
|||
|
--newNVertices;
|
|||
|
}
|
|||
|
else
|
|||
|
mergeMe[i] = false;
|
|||
|
}
|
|||
|
|
|||
|
if (newNVertices == vertices.Count || newNVertices == 0)
|
|||
|
return;
|
|||
|
|
|||
|
int currIndex = 0;
|
|||
|
|
|||
|
//Copy the vertices to a new list and clear the old
|
|||
|
Vertices oldVertices = new Vertices(vertices);
|
|||
|
vertices.Clear();
|
|||
|
|
|||
|
for (int i = 0; i < oldVertices.Count; ++i)
|
|||
|
{
|
|||
|
if (mergeMe[i] || newNVertices == 0 || currIndex == newNVertices)
|
|||
|
continue;
|
|||
|
|
|||
|
Debug.Assert(currIndex < newNVertices);
|
|||
|
|
|||
|
vertices.Add(oldVertices[i]);
|
|||
|
++currIndex;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
//Misc
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Merges the identical points in the polygon.
|
|||
|
/// </summary>
|
|||
|
/// <param name="vertices">The vertices.</param>
|
|||
|
/// <returns></returns>
|
|||
|
public static Vertices MergeIdenticalPoints(Vertices vertices)
|
|||
|
{
|
|||
|
//We use a dictonary here because HashSet is not avaliable on all platforms.
|
|||
|
HashSet<Vector2> results = new HashSet<Vector2>();
|
|||
|
|
|||
|
for (int i = 0; i < vertices.Count; i++)
|
|||
|
{
|
|||
|
results.Add(vertices[i]);
|
|||
|
}
|
|||
|
|
|||
|
Vertices returnResults = new Vertices();
|
|||
|
foreach (Vector2 v in results)
|
|||
|
{
|
|||
|
returnResults.Add(v);
|
|||
|
}
|
|||
|
|
|||
|
return returnResults;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Reduces the polygon by distance.
|
|||
|
/// </summary>
|
|||
|
/// <param name="vertices">The vertices.</param>
|
|||
|
/// <param name="distance">The distance between points. Points closer than this will be 'joined'.</param>
|
|||
|
/// <returns></returns>
|
|||
|
public static Vertices ReduceByDistance(Vertices vertices, float distance)
|
|||
|
{
|
|||
|
//We can't simplify polygons under 3 vertices
|
|||
|
if (vertices.Count < 3)
|
|||
|
return vertices;
|
|||
|
|
|||
|
Vertices simplified = new Vertices();
|
|||
|
|
|||
|
for (int i = 0; i < vertices.Count; i++)
|
|||
|
{
|
|||
|
Vector2 current = vertices[i];
|
|||
|
Vector2 next = vertices.NextVertex(i);
|
|||
|
|
|||
|
//If they are closer than the distance, continue
|
|||
|
if ((next - current).LengthSquared() <= distance)
|
|||
|
continue;
|
|||
|
|
|||
|
simplified.Add(current);
|
|||
|
}
|
|||
|
|
|||
|
return simplified;
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// Reduces the polygon by removing the Nth vertex in the vertices list.
|
|||
|
/// </summary>
|
|||
|
/// <param name="vertices">The vertices.</param>
|
|||
|
/// <param name="nth">The Nth point to remove. Example: 5.</param>
|
|||
|
/// <returns></returns>
|
|||
|
public static Vertices ReduceByNth(Vertices vertices, int nth)
|
|||
|
{
|
|||
|
//We can't simplify polygons under 3 vertices
|
|||
|
if (vertices.Count < 3)
|
|||
|
return vertices;
|
|||
|
|
|||
|
if (nth == 0)
|
|||
|
return vertices;
|
|||
|
|
|||
|
Vertices result = new Vertices(vertices.Count);
|
|||
|
|
|||
|
for (int i = 0; i < vertices.Count; i++)
|
|||
|
{
|
|||
|
if (i % nth == 0)
|
|||
|
continue;
|
|||
|
|
|||
|
result.Add(vertices[i]);
|
|||
|
}
|
|||
|
|
|||
|
return result;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|