255 lines
8.5 KiB
C#
255 lines
8.5 KiB
C#
|
/*
|
|||
|
* Farseer Physics Engine based on Box2D.XNA port:
|
|||
|
* Copyright (c) 2010 Ian Qvist
|
|||
|
*
|
|||
|
* Box2D.XNA port of Box2D:
|
|||
|
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
|
|||
|
*
|
|||
|
* Original source Box2D:
|
|||
|
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
|||
|
*
|
|||
|
* This software is provided 'as-is', without any express or implied
|
|||
|
* warranty. In no event will the authors be held liable for any damages
|
|||
|
* arising from the use of this software.
|
|||
|
* Permission is granted to anyone to use this software for any purpose,
|
|||
|
* including commercial applications, and to alter it and redistribute it
|
|||
|
* freely, subject to the following restrictions:
|
|||
|
* 1. The origin of this software must not be misrepresented; you must not
|
|||
|
* claim that you wrote the original software. If you use this software
|
|||
|
* in a product, an acknowledgment in the product documentation would be
|
|||
|
* appreciated but is not required.
|
|||
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|||
|
* misrepresented as being the original software.
|
|||
|
* 3. This notice may not be removed or altered from any source distribution.
|
|||
|
*/
|
|||
|
|
|||
|
using System;
|
|||
|
using System.Diagnostics;
|
|||
|
using FarseerPhysics.Common;
|
|||
|
using Microsoft.Xna.Framework;
|
|||
|
|
|||
|
namespace FarseerPhysics.Dynamics.Joints
|
|||
|
{
|
|||
|
// 1-D rained system
|
|||
|
// m (v2 - v1) = lambda
|
|||
|
// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
|
|||
|
// x2 = x1 + h * v2
|
|||
|
|
|||
|
// 1-D mass-damper-spring system
|
|||
|
// m (v2 - v1) + h * d * v2 + h * k *
|
|||
|
|
|||
|
// C = norm(p2 - p1) - L
|
|||
|
// u = (p2 - p1) / norm(p2 - p1)
|
|||
|
// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
|
|||
|
// J = [-u -cross(r1, u) u cross(r2, u)]
|
|||
|
// K = J * invM * JT
|
|||
|
// = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// A distance joint rains two points on two bodies
|
|||
|
/// to remain at a fixed distance from each other. You can view
|
|||
|
/// this as a massless, rigid rod.
|
|||
|
/// </summary>
|
|||
|
public class FixedDistanceJoint : Joint
|
|||
|
{
|
|||
|
/// <summary>
|
|||
|
/// The local anchor point relative to bodyA's origin.
|
|||
|
/// </summary>
|
|||
|
public Vector2 LocalAnchorA;
|
|||
|
|
|||
|
private float _bias;
|
|||
|
private float _gamma;
|
|||
|
private float _impulse;
|
|||
|
private float _mass;
|
|||
|
private Vector2 _u;
|
|||
|
private Vector2 _worldAnchorB;
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// This requires defining an
|
|||
|
/// anchor point on both bodies and the non-zero length of the
|
|||
|
/// distance joint. If you don't supply a length, the local anchor points
|
|||
|
/// is used so that the initial configuration can violate the constraint
|
|||
|
/// slightly. This helps when saving and loading a game.
|
|||
|
/// @warning Do not use a zero or short length.
|
|||
|
/// </summary>
|
|||
|
/// <param name="body">The body.</param>
|
|||
|
/// <param name="bodyAnchor">The body anchor.</param>
|
|||
|
/// <param name="worldAnchor">The world anchor.</param>
|
|||
|
public FixedDistanceJoint(Body body, Vector2 bodyAnchor, Vector2 worldAnchor)
|
|||
|
: base(body)
|
|||
|
{
|
|||
|
JointType = JointType.FixedDistance;
|
|||
|
|
|||
|
LocalAnchorA = bodyAnchor;
|
|||
|
_worldAnchorB = worldAnchor;
|
|||
|
|
|||
|
//Calculate the length
|
|||
|
Vector2 d = WorldAnchorB - WorldAnchorA;
|
|||
|
Length = d.Length();
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// The natural length between the anchor points.
|
|||
|
/// Manipulating the length can lead to non-physical behavior when the frequency is zero.
|
|||
|
/// </summary>
|
|||
|
public float Length { get; set; }
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// The mass-spring-damper frequency in Hertz.
|
|||
|
/// </summary>
|
|||
|
public float Frequency { get; set; }
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// The damping ratio. 0 = no damping, 1 = critical damping.
|
|||
|
/// </summary>
|
|||
|
public float DampingRatio { get; set; }
|
|||
|
|
|||
|
public override sealed Vector2 WorldAnchorA
|
|||
|
{
|
|||
|
get { return BodyA.GetWorldPoint(LocalAnchorA); }
|
|||
|
}
|
|||
|
|
|||
|
public override sealed Vector2 WorldAnchorB
|
|||
|
{
|
|||
|
get { return _worldAnchorB; }
|
|||
|
set { _worldAnchorB = value; }
|
|||
|
}
|
|||
|
|
|||
|
public override Vector2 GetReactionForce(float invDt)
|
|||
|
{
|
|||
|
return (invDt * _impulse) * _u;
|
|||
|
}
|
|||
|
|
|||
|
public override float GetReactionTorque(float invDt)
|
|||
|
{
|
|||
|
return 0.0f;
|
|||
|
}
|
|||
|
|
|||
|
internal override void InitVelocityConstraints(ref TimeStep step)
|
|||
|
{
|
|||
|
Body b1 = BodyA;
|
|||
|
|
|||
|
Transform xf1;
|
|||
|
b1.GetTransform(out xf1);
|
|||
|
|
|||
|
// Compute the effective mass matrix.
|
|||
|
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b1.LocalCenter);
|
|||
|
Vector2 r2 = _worldAnchorB;
|
|||
|
_u = r2 - b1.Sweep.C - r1;
|
|||
|
|
|||
|
// Handle singularity.
|
|||
|
float length = _u.Length();
|
|||
|
if (length > Settings.LinearSlop)
|
|||
|
{
|
|||
|
_u *= 1.0f / length;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
_u = Vector2.Zero;
|
|||
|
}
|
|||
|
|
|||
|
float cr1u = MathUtils.Cross(r1, _u);
|
|||
|
float cr2u = MathUtils.Cross(r2, _u);
|
|||
|
float invMass = b1.InvMass + b1.InvI * cr1u * cr1u + 0 * cr2u * cr2u;
|
|||
|
Debug.Assert(invMass > Settings.Epsilon);
|
|||
|
_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
|
|||
|
|
|||
|
if (Frequency > 0.0f)
|
|||
|
{
|
|||
|
float C = length - Length;
|
|||
|
|
|||
|
// Frequency
|
|||
|
float omega = 2.0f * Settings.Pi * Frequency;
|
|||
|
|
|||
|
// Damping coefficient
|
|||
|
float d = 2.0f * _mass * DampingRatio * omega;
|
|||
|
|
|||
|
// Spring stiffness
|
|||
|
float k = _mass * omega * omega;
|
|||
|
|
|||
|
// magic formulas
|
|||
|
_gamma = step.dt * (d + step.dt * k);
|
|||
|
_gamma = _gamma != 0.0f ? 1.0f / _gamma : 0.0f;
|
|||
|
_bias = C * step.dt * k * _gamma;
|
|||
|
|
|||
|
_mass = invMass + _gamma;
|
|||
|
_mass = _mass != 0.0f ? 1.0f / _mass : 0.0f;
|
|||
|
}
|
|||
|
|
|||
|
if (Settings.EnableWarmstarting)
|
|||
|
{
|
|||
|
// Scale the impulse to support a variable time step.
|
|||
|
_impulse *= step.dtRatio;
|
|||
|
|
|||
|
Vector2 P = _impulse * _u;
|
|||
|
b1.LinearVelocityInternal -= b1.InvMass * P;
|
|||
|
b1.AngularVelocityInternal -= b1.InvI * MathUtils.Cross(r1, P);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
_impulse = 0.0f;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
internal override void SolveVelocityConstraints(ref TimeStep step)
|
|||
|
{
|
|||
|
Body b1 = BodyA;
|
|||
|
|
|||
|
Transform xf1;
|
|||
|
b1.GetTransform(out xf1);
|
|||
|
|
|||
|
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b1.LocalCenter);
|
|||
|
|
|||
|
// Cdot = dot(u, v + cross(w, r))
|
|||
|
Vector2 v1 = b1.LinearVelocityInternal + MathUtils.Cross(b1.AngularVelocityInternal, r1);
|
|||
|
Vector2 v2 = Vector2.Zero;
|
|||
|
float Cdot = Vector2.Dot(_u, v2 - v1);
|
|||
|
|
|||
|
float impulse = -_mass * (Cdot + _bias + _gamma * _impulse);
|
|||
|
_impulse += impulse;
|
|||
|
|
|||
|
Vector2 P = impulse * _u;
|
|||
|
b1.LinearVelocityInternal -= b1.InvMass * P;
|
|||
|
b1.AngularVelocityInternal -= b1.InvI * MathUtils.Cross(r1, P);
|
|||
|
}
|
|||
|
|
|||
|
internal override bool SolvePositionConstraints()
|
|||
|
{
|
|||
|
if (Frequency > 0.0f)
|
|||
|
{
|
|||
|
// There is no position correction for soft distance constraints.
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
Body b1 = BodyA;
|
|||
|
|
|||
|
Transform xf1;
|
|||
|
b1.GetTransform(out xf1);
|
|||
|
|
|||
|
Vector2 r1 = MathUtils.Multiply(ref xf1.R, LocalAnchorA - b1.LocalCenter);
|
|||
|
Vector2 r2 = _worldAnchorB;
|
|||
|
|
|||
|
Vector2 d = r2 - b1.Sweep.C - r1;
|
|||
|
|
|||
|
float length = d.Length();
|
|||
|
|
|||
|
if (length == 0.0f)
|
|||
|
return true;
|
|||
|
|
|||
|
d /= length;
|
|||
|
float C = length - Length;
|
|||
|
C = MathUtils.Clamp(C, -Settings.MaxLinearCorrection, Settings.MaxLinearCorrection);
|
|||
|
|
|||
|
float impulse = -_mass * C;
|
|||
|
_u = d;
|
|||
|
Vector2 P = impulse * _u;
|
|||
|
|
|||
|
b1.Sweep.C -= b1.InvMass * P;
|
|||
|
b1.Sweep.A -= b1.InvI * MathUtils.Cross(r1, P);
|
|||
|
|
|||
|
b1.SynchronizeTransform();
|
|||
|
|
|||
|
return Math.Abs(C) < Settings.LinearSlop;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|