axiosengine/axios/Common/Vertices.cs

955 lines
33 KiB
C#
Raw Permalink Normal View History

2012-03-19 23:57:59 +00:00
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using FarseerPhysics.Collision;
using Microsoft.Xna.Framework;
namespace FarseerPhysics.Common
{
#if !(XBOX360)
[DebuggerDisplay("Count = {Count} Vertices = {ToString()}")]
#endif
public class Vertices : List<Vector2>
{
public Vertices()
{
}
public Vertices(int capacity)
{
Capacity = capacity;
}
public Vertices(Vector2[] vector2)
{
for (int i = 0; i < vector2.Length; i++)
{
Add(vector2[i]);
}
}
public Vertices(IList<Vector2> vertices)
{
for (int i = 0; i < vertices.Count; i++)
{
Add(vertices[i]);
}
}
/// <summary>
/// Nexts the index.
/// </summary>
/// <param name="index">The index.</param>
/// <returns></returns>
public int NextIndex(int index)
{
if (index == Count - 1)
{
return 0;
}
return index + 1;
}
public Vector2 NextVertex(int index)
{
return this[NextIndex(index)];
}
/// <summary>
/// Gets the previous index.
/// </summary>
/// <param name="index">The index.</param>
/// <returns></returns>
public int PreviousIndex(int index)
{
if (index == 0)
{
return Count - 1;
}
return index - 1;
}
public Vector2 PreviousVertex(int index)
{
return this[PreviousIndex(index)];
}
/// <summary>
/// Gets the signed area.
/// </summary>
/// <returns></returns>
public float GetSignedArea()
{
int i;
float area = 0;
for (i = 0; i < Count; i++)
{
int j = (i + 1) % Count;
area += this[i].X * this[j].Y;
area -= this[i].Y * this[j].X;
}
area /= 2.0f;
return area;
}
/// <summary>
/// Gets the area.
/// </summary>
/// <returns></returns>
public float GetArea()
{
int i;
float area = 0;
for (i = 0; i < Count; i++)
{
int j = (i + 1) % Count;
area += this[i].X * this[j].Y;
area -= this[i].Y * this[j].X;
}
area /= 2.0f;
return (area < 0 ? -area : area);
}
/// <summary>
/// Gets the centroid.
/// </summary>
/// <returns></returns>
public Vector2 GetCentroid()
{
// Same algorithm is used by Box2D
Vector2 c = Vector2.Zero;
float area = 0.0f;
const float inv3 = 1.0f / 3.0f;
Vector2 pRef = Vector2.Zero;
for (int i = 0; i < Count; ++i)
{
// Triangle vertices.
Vector2 p1 = pRef;
Vector2 p2 = this[i];
Vector2 p3 = i + 1 < Count ? this[i + 1] : this[0];
Vector2 e1 = p2 - p1;
Vector2 e2 = p3 - p1;
float D = MathUtils.Cross(e1, e2);
float triangleArea = 0.5f * D;
area += triangleArea;
// Area weighted centroid
c += triangleArea * inv3 * (p1 + p2 + p3);
}
// Centroid
c *= 1.0f / area;
return c;
}
/// <summary>
/// Gets the radius based on area.
/// </summary>
/// <returns></returns>
public float GetRadius()
{
float area = GetSignedArea();
double radiusSqrd = (double)area / MathHelper.Pi;
if (radiusSqrd < 0)
{
radiusSqrd *= -1;
}
return (float)Math.Sqrt(radiusSqrd);
}
/// <summary>
/// Returns an AABB for vertex.
/// </summary>
/// <returns></returns>
public AABB GetCollisionBox()
{
AABB aabb;
Vector2 lowerBound = new Vector2(float.MaxValue, float.MaxValue);
Vector2 upperBound = new Vector2(float.MinValue, float.MinValue);
for (int i = 0; i < Count; ++i)
{
if (this[i].X < lowerBound.X)
{
lowerBound.X = this[i].X;
}
if (this[i].X > upperBound.X)
{
upperBound.X = this[i].X;
}
if (this[i].Y < lowerBound.Y)
{
lowerBound.Y = this[i].Y;
}
if (this[i].Y > upperBound.Y)
{
upperBound.Y = this[i].Y;
}
}
aabb.LowerBound = lowerBound;
aabb.UpperBound = upperBound;
return aabb;
}
public void Translate(Vector2 vector)
{
Translate(ref vector);
}
/// <summary>
/// Translates the vertices with the specified vector.
/// </summary>
/// <param name="vector">The vector.</param>
public void Translate(ref Vector2 vector)
{
for (int i = 0; i < Count; i++)
this[i] = Vector2.Add(this[i], vector);
}
/// <summary>
/// Scales the vertices with the specified vector.
/// </summary>
/// <param name="value">The Value.</param>
public void Scale(ref Vector2 value)
{
for (int i = 0; i < Count; i++)
this[i] = Vector2.Multiply(this[i], value);
}
/// <summary>
/// Rotate the vertices with the defined value in radians.
/// </summary>
/// <param name="value">The amount to rotate by in radians.</param>
public void Rotate(float value)
{
Matrix rotationMatrix;
Matrix.CreateRotationZ(value, out rotationMatrix);
for (int i = 0; i < Count; i++)
this[i] = Vector2.Transform(this[i], rotationMatrix);
}
/// <summary>
/// Assuming the polygon is simple; determines whether the polygon is convex.
/// NOTE: It will also return false if the input contains colinear edges.
/// </summary>
/// <returns>
/// <c>true</c> if it is convex; otherwise, <c>false</c>.
/// </returns>
public bool IsConvex()
{
// Ensure the polygon is convex and the interior
// is to the left of each edge.
for (int i = 0; i < Count; ++i)
{
int i1 = i;
int i2 = i + 1 < Count ? i + 1 : 0;
Vector2 edge = this[i2] - this[i1];
for (int j = 0; j < Count; ++j)
{
// Don't check vertices on the current edge.
if (j == i1 || j == i2)
{
continue;
}
Vector2 r = this[j] - this[i1];
float s = edge.X * r.Y - edge.Y * r.X;
if (s <= 0.0f)
return false;
}
}
return true;
}
public bool IsCounterClockWise()
{
//We just return true for lines
if (Count < 3)
return true;
return (GetSignedArea() > 0.0f);
}
/// <summary>
/// Forces counter clock wise order.
/// </summary>
public void ForceCounterClockWise()
{
if (!IsCounterClockWise())
{
Reverse();
}
}
/// <summary>
/// Check for edge crossings
/// </summary>
/// <returns></returns>
public bool IsSimple()
{
for (int i = 0; i < Count; ++i)
{
int iplus = (i + 1 > Count - 1) ? 0 : i + 1;
Vector2 a1 = new Vector2(this[i].X, this[i].Y);
Vector2 a2 = new Vector2(this[iplus].X, this[iplus].Y);
for (int j = i + 1; j < Count; ++j)
{
int jplus = (j + 1 > Count - 1) ? 0 : j + 1;
Vector2 b1 = new Vector2(this[j].X, this[j].Y);
Vector2 b2 = new Vector2(this[jplus].X, this[jplus].Y);
Vector2 temp;
if (LineTools.LineIntersect2(a1, a2, b1, b2, out temp))
{
return false;
}
}
}
return true;
}
//TODO: Test
//Implementation found here: http://www.gamedev.net/community/forums/topic.asp?topic_id=548477
public bool IsSimple2()
{
for (int i = 0; i < Count; ++i)
{
if (i < Count - 1)
{
for (int h = i + 1; h < Count; ++h)
{
// Do two vertices lie on top of one another?
if (this[i] == this[h])
{
return true;
}
}
}
int j = (i + 1) % Count;
Vector2 iToj = this[j] - this[i];
Vector2 iTojNormal = new Vector2(iToj.Y, -iToj.X);
// i is the first vertex and j is the second
int startK = (j + 1) % Count;
int endK = (i - 1 + Count) % Count;
endK += startK < endK ? 0 : startK + 1;
int k = startK;
Vector2 iTok = this[k] - this[i];
bool onLeftSide = Vector2.Dot(iTok, iTojNormal) >= 0;
Vector2 prevK = this[k];
++k;
for (; k <= endK; ++k)
{
int modK = k % Count;
iTok = this[modK] - this[i];
if (onLeftSide != Vector2.Dot(iTok, iTojNormal) >= 0)
{
Vector2 prevKtoK = this[modK] - prevK;
Vector2 prevKtoKNormal = new Vector2(prevKtoK.Y, -prevKtoK.X);
if ((Vector2.Dot(this[i] - prevK, prevKtoKNormal) >= 0) !=
(Vector2.Dot(this[j] - prevK, prevKtoKNormal) >= 0))
{
return true;
}
}
onLeftSide = Vector2.Dot(iTok, iTojNormal) > 0;
prevK = this[modK];
}
}
return false;
}
// From Eric Jordan's convex decomposition library
/// <summary>
/// Checks if polygon is valid for use in Box2d engine.
/// Last ditch effort to ensure no invalid polygons are
/// added to world geometry.
///
/// Performs a full check, for simplicity, convexity,
/// orientation, minimum angle, and volume. This won't
/// be very efficient, and a lot of it is redundant when
/// other tools in this section are used.
/// </summary>
/// <returns></returns>
public bool CheckPolygon()
{
int error = -1;
if (Count < 3 || Count > Settings.MaxPolygonVertices)
{
error = 0;
}
if (!IsConvex())
{
error = 1;
}
if (!IsSimple())
{
error = 2;
}
if (GetArea() < Settings.Epsilon)
{
error = 3;
}
//Compute normals
Vector2[] normals = new Vector2[Count];
Vertices vertices = new Vertices(Count);
for (int i = 0; i < Count; ++i)
{
vertices.Add(new Vector2(this[i].X, this[i].Y));
int i1 = i;
int i2 = i + 1 < Count ? i + 1 : 0;
Vector2 edge = new Vector2(this[i2].X - this[i1].X, this[i2].Y - this[i1].Y);
normals[i] = MathUtils.Cross(edge, 1.0f);
normals[i].Normalize();
}
//Required side checks
for (int i = 0; i < Count; ++i)
{
int iminus = (i == 0) ? Count - 1 : i - 1;
//Parallel sides check
float cross = MathUtils.Cross(normals[iminus], normals[i]);
cross = MathUtils.Clamp(cross, -1.0f, 1.0f);
float angle = (float)Math.Asin(cross);
if (angle <= Settings.AngularSlop)
{
error = 4;
break;
}
//Too skinny check
for (int j = 0; j < Count; ++j)
{
if (j == i || j == (i + 1) % Count)
{
continue;
}
float s = Vector2.Dot(normals[i], vertices[j] - vertices[i]);
if (s >= -Settings.LinearSlop)
{
error = 5;
}
}
Vector2 centroid = vertices.GetCentroid();
Vector2 n1 = normals[iminus];
Vector2 n2 = normals[i];
Vector2 v = vertices[i] - centroid;
Vector2 d = new Vector2();
d.X = Vector2.Dot(n1, v); // - toiSlop;
d.Y = Vector2.Dot(n2, v); // - toiSlop;
// Shifting the edge inward by toiSlop should
// not cause the plane to pass the centroid.
if ((d.X < 0.0f) || (d.Y < 0.0f))
{
error = 6;
}
}
if (error != -1)
{
Debug.WriteLine("Found invalid polygon, ");
switch (error)
{
case 0:
Debug.WriteLine(string.Format("must have between 3 and {0} vertices.\n",
Settings.MaxPolygonVertices));
break;
case 1:
Debug.WriteLine("must be convex.\n");
break;
case 2:
Debug.WriteLine("must be simple (cannot intersect itself).\n");
break;
case 3:
Debug.WriteLine("area is too small.\n");
break;
case 4:
Debug.WriteLine("sides are too close to parallel.\n");
break;
case 5:
Debug.WriteLine("polygon is too thin.\n");
break;
case 6:
Debug.WriteLine("core shape generation would move edge past centroid (too thin).\n");
break;
default:
Debug.WriteLine("don't know why.\n");
break;
}
}
return error != -1;
}
// From Eric Jordan's convex decomposition library
/// <summary>
/// Trace the edge of a non-simple polygon and return a simple polygon.
///
/// Method:
/// Start at vertex with minimum y (pick maximum x one if there are two).
/// We aim our "lastDir" vector at (1.0, 0)
/// We look at the two rays going off from our start vertex, and follow whichever
/// has the smallest angle (in -Pi . Pi) wrt lastDir ("rightest" turn)
/// Loop until we hit starting vertex:
/// We add our current vertex to the list.
/// We check the seg from current vertex to next vertex for intersections
/// - if no intersections, follow to next vertex and continue
/// - if intersections, pick one with minimum distance
/// - if more than one, pick one with "rightest" next point (two possibilities for each)
/// </summary>
/// <param name="verts">The vertices.</param>
/// <returns></returns>
public Vertices TraceEdge(Vertices verts)
{
PolyNode[] nodes = new PolyNode[verts.Count * verts.Count];
//overkill, but sufficient (order of mag. is right)
int nNodes = 0;
//Add base nodes (raw outline)
for (int i = 0; i < verts.Count; ++i)
{
Vector2 pos = new Vector2(verts[i].X, verts[i].Y);
nodes[i].Position = pos;
++nNodes;
int iplus = (i == verts.Count - 1) ? 0 : i + 1;
int iminus = (i == 0) ? verts.Count - 1 : i - 1;
nodes[i].AddConnection(nodes[iplus]);
nodes[i].AddConnection(nodes[iminus]);
}
//Process intersection nodes - horribly inefficient
bool dirty = true;
int counter = 0;
while (dirty)
{
dirty = false;
for (int i = 0; i < nNodes; ++i)
{
for (int j = 0; j < nodes[i].NConnected; ++j)
{
for (int k = 0; k < nNodes; ++k)
{
if (k == i || nodes[k] == nodes[i].Connected[j]) continue;
for (int l = 0; l < nodes[k].NConnected; ++l)
{
if (nodes[k].Connected[l] == nodes[i].Connected[j] ||
nodes[k].Connected[l] == nodes[i]) continue;
//Check intersection
Vector2 intersectPt;
bool crosses = LineTools.LineIntersect(nodes[i].Position, nodes[i].Connected[j].Position,
nodes[k].Position, nodes[k].Connected[l].Position,
out intersectPt);
if (crosses)
{
dirty = true;
//Destroy and re-hook connections at crossing point
PolyNode connj = nodes[i].Connected[j];
PolyNode connl = nodes[k].Connected[l];
nodes[i].Connected[j].RemoveConnection(nodes[i]);
nodes[i].RemoveConnection(connj);
nodes[k].Connected[l].RemoveConnection(nodes[k]);
nodes[k].RemoveConnection(connl);
nodes[nNodes] = new PolyNode(intersectPt);
nodes[nNodes].AddConnection(nodes[i]);
nodes[i].AddConnection(nodes[nNodes]);
nodes[nNodes].AddConnection(nodes[k]);
nodes[k].AddConnection(nodes[nNodes]);
nodes[nNodes].AddConnection(connj);
connj.AddConnection(nodes[nNodes]);
nodes[nNodes].AddConnection(connl);
connl.AddConnection(nodes[nNodes]);
++nNodes;
goto SkipOut;
}
}
}
}
}
SkipOut:
++counter;
}
//Collapse duplicate points
bool foundDupe = true;
int nActive = nNodes;
while (foundDupe)
{
foundDupe = false;
for (int i = 0; i < nNodes; ++i)
{
if (nodes[i].NConnected == 0) continue;
for (int j = i + 1; j < nNodes; ++j)
{
if (nodes[j].NConnected == 0) continue;
Vector2 diff = nodes[i].Position - nodes[j].Position;
if (diff.LengthSquared() <= Settings.Epsilon * Settings.Epsilon)
{
if (nActive <= 3)
return new Vertices();
//printf("Found dupe, %d left\n",nActive);
--nActive;
foundDupe = true;
PolyNode inode = nodes[i];
PolyNode jnode = nodes[j];
//Move all of j's connections to i, and orphan j
int njConn = jnode.NConnected;
for (int k = 0; k < njConn; ++k)
{
PolyNode knode = jnode.Connected[k];
Debug.Assert(knode != jnode);
if (knode != inode)
{
inode.AddConnection(knode);
knode.AddConnection(inode);
}
knode.RemoveConnection(jnode);
}
jnode.NConnected = 0;
}
}
}
}
//Now walk the edge of the list
//Find node with minimum y value (max x if equal)
float minY = float.MaxValue;
float maxX = -float.MaxValue;
int minYIndex = -1;
for (int i = 0; i < nNodes; ++i)
{
if (nodes[i].Position.Y < minY && nodes[i].NConnected > 1)
{
minY = nodes[i].Position.Y;
minYIndex = i;
maxX = nodes[i].Position.X;
}
else if (nodes[i].Position.Y == minY && nodes[i].Position.X > maxX && nodes[i].NConnected > 1)
{
minYIndex = i;
maxX = nodes[i].Position.X;
}
}
Vector2 origDir = new Vector2(1.0f, 0.0f);
Vector2[] resultVecs = new Vector2[4 * nNodes];
// nodes may be visited more than once, unfortunately - change to growable array!
int nResultVecs = 0;
PolyNode currentNode = nodes[minYIndex];
PolyNode startNode = currentNode;
Debug.Assert(currentNode.NConnected > 0);
PolyNode nextNode = currentNode.GetRightestConnection(origDir);
if (nextNode == null)
{
Vertices vertices = new Vertices(nResultVecs);
for (int i = 0; i < nResultVecs; ++i)
{
vertices.Add(resultVecs[i]);
}
return vertices;
}
// Borked, clean up our mess and return
resultVecs[0] = startNode.Position;
++nResultVecs;
while (nextNode != startNode)
{
if (nResultVecs > 4 * nNodes)
{
Debug.Assert(false);
}
resultVecs[nResultVecs++] = nextNode.Position;
PolyNode oldNode = currentNode;
currentNode = nextNode;
nextNode = currentNode.GetRightestConnection(oldNode);
if (nextNode == null)
{
Vertices vertices = new Vertices(nResultVecs);
for (int i = 0; i < nResultVecs; ++i)
{
vertices.Add(resultVecs[i]);
}
return vertices;
}
// There was a problem, so jump out of the loop and use whatever garbage we've generated so far
}
return new Vertices();
}
private class PolyNode
{
private const int MaxConnected = 32;
/*
* Given sines and cosines, tells if A's angle is less than B's on -Pi, Pi
* (in other words, is A "righter" than B)
*/
public PolyNode[] Connected = new PolyNode[MaxConnected];
public int NConnected;
public Vector2 Position;
public PolyNode(Vector2 pos)
{
Position = pos;
NConnected = 0;
}
private bool IsRighter(float sinA, float cosA, float sinB, float cosB)
{
if (sinA < 0)
{
if (sinB > 0 || cosA <= cosB) return true;
else return false;
}
else
{
if (sinB < 0 || cosA <= cosB) return false;
else return true;
}
}
public void AddConnection(PolyNode toMe)
{
Debug.Assert(NConnected < MaxConnected);
// Ignore duplicate additions
for (int i = 0; i < NConnected; ++i)
{
if (Connected[i] == toMe) return;
}
Connected[NConnected] = toMe;
++NConnected;
}
public void RemoveConnection(PolyNode fromMe)
{
bool isFound = false;
int foundIndex = -1;
for (int i = 0; i < NConnected; ++i)
{
if (fromMe == Connected[i])
{
//.position == connected[i].position){
isFound = true;
foundIndex = i;
break;
}
}
Debug.Assert(isFound);
--NConnected;
for (int i = foundIndex; i < NConnected; ++i)
{
Connected[i] = Connected[i + 1];
}
}
public PolyNode GetRightestConnection(PolyNode incoming)
{
if (NConnected == 0) Debug.Assert(false); // This means the connection graph is inconsistent
if (NConnected == 1)
{
//b2Assert(false);
// Because of the possibility of collapsing nearby points,
// we may end up with "spider legs" dangling off of a region.
// The correct behavior here is to turn around.
return incoming;
}
Vector2 inDir = Position - incoming.Position;
float inLength = inDir.Length();
inDir.Normalize();
Debug.Assert(inLength > Settings.Epsilon);
PolyNode result = null;
for (int i = 0; i < NConnected; ++i)
{
if (Connected[i] == incoming) continue;
Vector2 testDir = Connected[i].Position - Position;
float testLengthSqr = testDir.LengthSquared();
testDir.Normalize();
Debug.Assert(testLengthSqr >= Settings.Epsilon * Settings.Epsilon);
float myCos = Vector2.Dot(inDir, testDir);
float mySin = MathUtils.Cross(inDir, testDir);
if (result != null)
{
Vector2 resultDir = result.Position - Position;
resultDir.Normalize();
float resCos = Vector2.Dot(inDir, resultDir);
float resSin = MathUtils.Cross(inDir, resultDir);
if (IsRighter(mySin, myCos, resSin, resCos))
{
result = Connected[i];
}
}
else
{
result = Connected[i];
}
}
Debug.Assert(result != null);
return result;
}
public PolyNode GetRightestConnection(Vector2 incomingDir)
{
Vector2 diff = Position - incomingDir;
PolyNode temp = new PolyNode(diff);
PolyNode res = GetRightestConnection(temp);
Debug.Assert(res != null);
return res;
}
}
public override string ToString()
{
StringBuilder builder = new StringBuilder();
for (int i = 0; i < Count; i++)
{
builder.Append(this[i].ToString());
if (i < Count - 1)
{
builder.Append(" ");
}
}
return builder.ToString();
}
/// <summary>
/// Projects to axis.
/// </summary>
/// <param name="axis">The axis.</param>
/// <param name="min">The min.</param>
/// <param name="max">The max.</param>
public void ProjectToAxis(ref Vector2 axis, out float min, out float max)
{
// To project a point on an axis use the dot product
float dotProduct = Vector2.Dot(axis, this[0]);
min = dotProduct;
max = dotProduct;
for (int i = 0; i < Count; i++)
{
dotProduct = Vector2.Dot(this[i], axis);
if (dotProduct < min)
{
min = dotProduct;
}
else
{
if (dotProduct > max)
{
max = dotProduct;
}
}
}
}
/// <summary>
/// Winding number test for a point in a polygon.
/// </summary>
/// See more info about the algorithm here: http://softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm
/// <param name="point">The point to be tested.</param>
/// <returns>-1 if the winding number is zero and the point is outside
/// the polygon, 1 if the point is inside the polygon, and 0 if the point
/// is on the polygons edge.</returns>
public int PointInPolygon(ref Vector2 point)
{
// Winding number
int wn = 0;
// Iterate through polygon's edges
for (int i = 0; i < Count; i++)
{
// Get points
Vector2 p1 = this[i];
Vector2 p2 = this[NextIndex(i)];
// Test if a point is directly on the edge
Vector2 edge = p2 - p1;
float area = MathUtils.Area(ref p1, ref p2, ref point);
if (area == 0f && Vector2.Dot(point - p1, edge) >= 0f && Vector2.Dot(point - p2, edge) <= 0f)
{
return 0;
}
// Test edge for intersection with ray from point
if (p1.Y <= point.Y)
{
if (p2.Y > point.Y && area > 0f)
{
++wn;
}
}
else
{
if (p2.Y <= point.Y && area < 0f)
{
--wn;
}
}
}
return (wn == 0 ? -1 : 1);
}
/// <summary>
/// Compute the sum of the angles made between the test point and each pair of points making up the polygon.
/// If this sum is 2pi then the point is an interior point, if 0 then the point is an exterior point.
/// ref: http://ozviz.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/ - Solution 2
/// </summary>
public bool PointInPolygonAngle(ref Vector2 point)
{
double angle = 0;
// Iterate through polygon's edges
for (int i = 0; i < Count; i++)
{
// Get points
Vector2 p1 = this[i] - point;
Vector2 p2 = this[NextIndex(i)] - point;
angle += MathUtils.VectorAngle(ref p1, ref p2);
}
if (Math.Abs(angle) < Math.PI)
{
return false;
}
return true;
}
}
}